Advanced Search
MyIDEAS: Login to save this paper or follow this series

Adaptive continuous time Markov chain approximation model to general jump-diffusions

Contents:

Author Info

  • Mario Cerrato
  • Chia Chun Lo
  • Konstantinos Skindilias

Abstract

We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.gla.ac.uk/media/media_200512_en.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Business School - Economics, University of Glasgow in its series Working Papers with number 2011_16.

as in new window
Length:
Date of creation: Jun 2011
Date of revision:
Handle: RePEc:gla:glaewp:2011_16

Contact details of provider:
Postal: Adam Smith Building, Glasgow G12 8RT
Phone: 0141 330 4618
Fax: 0141 330 4940
Web page: http://www.gla.ac.uk/schools/business/research/
More information through EDIRC

Related research

Keywords: Markov Chains; Diffusion Approximation; Transition Density; Jump-Diffusion Approximation; Option Pricing;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2010. "Inference for stochastic volatility models using time change transformations," LSE Research Online Documents on Economics 31421, London School of Economics and Political Science, LSE Library.
  2. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
  3. Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  4. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  5. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  6. Takamizawa, Hideyuki, 2006. "Is Nonlinear Drift Implied by the Short-End of the Term Structure?," Discussion Papers 2006-08, Graduate School of Economics, Hitotsubashi University.
  7. Osnat Stramer & Matthew Bognar & Paul Schneider, 2010. "Bayesian Inference for Discretely Sampled Markov Processes with Closed-Form Likelihood Expansions," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(4), pages 450-480, Fall.
  8. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
  9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Igor Halperin & Andrey Itkin, 2013. "USLV: Unspanned Stochastic Local Volatility Model," Papers 1301.4442, arXiv.org, revised Mar 2013.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2011_16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jeanette Findlay).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.