Advanced Search
MyIDEAS: Login

How to play with a biased coin?

Contents:

Author Info

  • Gossner, O.
  • Vieille, N.

Abstract

We characterize the max min of repeated zero-sum games in which player one plays in pure strategies sonditional on the private observation of a fixed sequence random variables. Meanwhile we introduce a definition of a strategic distance between probability measures, and relate it to the standard Kullbach distance.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor. in its series Papers with number 99-31.

as in new window
Length: 31 pages
Date of creation: 1999
Date of revision:
Handle: RePEc:fth:pnegmi:99-31

Contact details of provider:
Postal: THEMA, Universite de Paris X-Nanterre, U.F.R. de science economiques, gestion, mathematiques et informatique, 200, avenue de la Republique 92001 Nanterre CEDEX.

Related research

Keywords: GAME THEORY ; UNCERTAINTY;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
  2. Lehrer, Ehud & Smorodinsky, Rann, 2000. "Relative entropy in sequential decision problems1," Journal of Mathematical Economics, Elsevier, vol. 33(4), pages 425-439, May.
  3. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
  4. Lehrer, Ehud, 1991. "Internal Correlation in Repeated Games," International Journal of Game Theory, Springer, vol. 19(4), pages 431-56.
  5. Lehrer Ehud, 1994. "Finitely Many Players with Bounded Recall in Infinitely Repeated Games," Games and Economic Behavior, Elsevier, vol. 7(3), pages 390-405, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-36, March.
  2. Gossner, Olivier & Tomala, Tristan, 2003. "Entropy and codification in repeated games with imperfect monitoring," Economics Papers from University Paris Dauphine 123456789/6885, Paris Dauphine University.
  3. Amparo Urbano Salvador & Penélope Hernández Rojas, 2000. "Codification schemes and finite automata," Working Papers. Serie AD 2006-28, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  4. GOSSNER, Olivier & TOMALA, Tristan, 2003. "Entropy and codification in repeated games with imperfect monitoring," CORE Discussion Papers 2003033, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
  6. Olivier Gossner & Jöhannes Horner, 2006. "When is the individually rational payoff in a repeated game equal to the minmax payoff?," Discussion Papers 1440, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  7. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fth:pnegmi:99-31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.