IDEAS home Printed from https://ideas.repec.org/p/fth/nystfi/98-086.html
   My bibliography  Save this paper

An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming

Author

Listed:
  • N. K. Chidambaran
  • Chi-Wen Jevons Lee
  • Joaguin R. Trigueros

Abstract

We propose a methodology of Genetic Programming to approximate the relationship between the option price, its contract terms and the properties of the underlying stock price. An important advantage of the Genetic Programming approach is that we can incorporate currently known formulas, such as the Black-Scholes model, in the search for the best approximation to the true pricing formula. Using Monte Carlo simulations, we show that the Genetic Programming model approximates the true solution better than the Black-Scholes model when stock prices folow a jump-diffusion process. We also show that the Genetic Programming model outperforms various other models in many different settings. Other advantages of the Genetic Programming approach include its robustness to changing environment, its low demand for data, and its computational speed. Since genetic programs are flexible, self-learning and sefl-improving, they are an ideal tool for practitioners.

Suggested Citation

  • N. K. Chidambaran & Chi-Wen Jevons Lee & Joaguin R. Trigueros, 1998. "An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-086, New York University, Leonard N. Stern School of Business-.
  • Handle: RePEc:fth:nystfi:98-086
    as

    Download full text from publisher

    File URL: http://www.stern.nyu.edu/fin/workpapers/wpa98086.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Galai, Dan, 1977. "Tests of Market Efficiency of the Chicago Board Options Exchange," The Journal of Business, University of Chicago Press, vol. 50(2), pages 167-197, April.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Baillie, Richard T. & DeGennaro, Ramon P., 1990. "Stock Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(2), pages 203-214, June.
    6. repec:fth:pennfi:70 is not listed on IDEAS
    7. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    8. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Franklin Allen & Risto Karjalainen, "undated". "Using Genetic Algorithms to Find Technical Trading Rules (Revised: 20-95)," Rodney L. White Center for Financial Research Working Papers 20-93, Wharton School Rodney L. White Center for Financial Research.
    11. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    12. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    13. Black, Fischer & Scholes, Myron S, 1972. "The Valuation of Option Contracts and a Test of Market Efficiency," Journal of Finance, American Finance Association, vol. 27(2), pages 399-417, May.
    14. Stephan, Jens A & Whaley, Robert E, 1990. "Intraday Price Change and Trading Volume Relations in the Stock and Stock Option Markets," Journal of Finance, American Finance Association, vol. 45(1), pages 191-220, March.
    15. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    18. Marimon, Ramon & McGrattan, Ellen & Sargent, Thomas J., 1990. "Money as a medium of exchange in an economy with artificially intelligent agents," Journal of Economic Dynamics and Control, Elsevier, vol. 14(2), pages 329-373, May.
    19. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
    2. Julia Bennell & Charles Sutcliffe, 2004. "Black–Scholes versus artificial neural networks in pricing FTSE 100 options," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 12(4), pages 243-260, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    2. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    3. Lieu, Derming, 1997. "Estimation of empirical pricing equations for foreign-currency options: Econometric models vs. arbitrage-free models," International Review of Economics & Finance, Elsevier, vol. 6(3), pages 259-286.
    4. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Robert F. Engle & Emil N. Siriwardane, 2018. "Structural GARCH: The Volatility-Leverage Connection," Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 449-492.
    8. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    9. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    10. Ming-Yuan Leon Li & Chun-Nan Chen, 2010. "Examining the interrelation dynamics between option and stock markets using the Markov-switching vector error correction model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(7), pages 1173-1191.
    11. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    12. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    13. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    14. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2008. "Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1415-1433, March.
    15. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    16. Brown, C. A. & Taylor, S. D., 1997. "A test of the Asay model for pricing options on the SPI futures contract," Pacific-Basin Finance Journal, Elsevier, vol. 5(5), pages 579-594, December.
    17. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    18. Matloob Ullah Khan & Ambrish Gupta & Sadaf Siraj, 2013. "Empirical Testing of Modified Black-Scholes Option Pricing Model Formula on NSE Derivative Market in India," International Journal of Economics and Financial Issues, Econjournals, vol. 3(1), pages 87-98.
    19. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    20. Sadayuki Ono, 2007. "Option Pricing under Stochastic Volatility and Trading Volume," Discussion Papers 07/05, Department of Economics, University of York.
    21. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:nystfi:98-086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fdnyuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.