Advanced Search
MyIDEAS: Login to save this paper or follow this series

Pricing Multivariate Contingent Claims Using Estimated Risk-neutral Density Functions

Contents:

Author Info

  • Joshua Rosenberg

Abstract

Many asset price series exhibit time-varying volatility, jumps, and other features inconsistent with assumptions about the underlying price process made by standard multivariate contingent claims (MVCC) pricing models. This paper develops an interpolative technique for pricing MVCCs ' flexible NLS pricing ' that involves the estimation of a flexible multivariate risk-neutral density function implied by existing asset prices. As an application, the flexible NLS pricing technique is used to value several bivariate contingent claims dependent on foreign exchange rates in 1993 and 1994. The bivariate flexible risk-neutral density function more accurately prices existing options than the bivariate lognormal density implied by a multivariate geometric brownian motion. In addition, the bivariate contingent claims analyzed have substantially different prices using the two density functions suggesting flexible NLS pricing may improve accuracy over standard methods.

(This abstract was borrowed from another version of this item.)

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by New York University, Leonard N. Stern School of Business- in its series New York University, Leonard N. Stern School Finance Department Working Paper Seires with number 96-36.

as in new window
Length:
Date of creation: Jan 1996
Date of revision:
Handle: RePEc:fth:nystfi:96-36

Contact details of provider:
Postal: U.S.A.; New York University, Leonard N. Stern School of Business, Department of Economics . 44 West 4th Street. New York, New York 10012-1126
Phone: (212) 998-0100
Web page: http://w4.stern.nyu.edu/finance/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ho, Teng-Suan & Stapleton, Richard C & Subrahmanyam, Marti G, 1995. "Multivariate Binomial Approximations for Asset Prices with Nonstationary Variance and Covariance Characteristics," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1125-52.
  2. Stapleton, Richard C & Subrahmanyam, Marti G, 1984. " The Valuation of Options When Asset Returns Are Generated by a Binomial Process," Journal of Finance, American Finance Association, vol. 39(5), pages 1525-39, December.
  3. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  4. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(01), pages 1-12, March.
  5. Stapleton, Richard C & Subrahmanyam, Marti G, 1984. " The Valuation of Multivariate Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 39(1), pages 207-28, March.
  6. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  7. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(03), pages 277-283, September.
  8. Garman, Mark B. & Kohlhagen, Steven W., 1983. "Foreign currency option values," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 231-237, December.
  9. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  10. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-50.
  11. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-86, March.
  12. Yacine Ait-Sahalia, 1995. "Nonparametric Pricing of Interest Rate Derivative Securities," NBER Working Papers 5345, National Bureau of Economic Research, Inc.
  13. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  14. Boyle, Phelim P. & Tse, Y. K., 1990. "An Algorithm for Computing Values of Options on the Maximum or Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(02), pages 215-227, June.
  15. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  16. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
  17. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nikkinen, Jussi, 2003. "Normality tests of option-implied risk-neutral densities: evidence from the small Finnish market," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 99-116.
  2. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
  3. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
  4. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, EconWPA.
  5. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
  6. Carluccio Bianchi & Alessandro Carta & Dean Fantazzini & Maria Elena De Giuli & Mario A. Maggi, 2009. "A Copula-VAR-X Approach for Industrial Production Modelling and Forecasting," Quaderni di Dipartimento 105, University of Pavia, Department of Economics and Quantitative Methods.
  7. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
  8. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
  9. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
  10. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
  11. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fth:nystfi:96-36. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.