Advanced Search
MyIDEAS: Login

Pitfalls in Constructing Bootstrap Confidence Intervals for Asymptotically Pivotal Statistics

Contents:

Author Info

  • Kilian, L.

Abstract

The conventional Edgeworth expansion view of bootstrap confidence intervals suggests that for the bootstrap to exceed the accuracy of the normal approximation one must bootstrap asymptotically pivotal statistics. This paper questions the basic premise of the asymptotic theory used to rationalize the higher-order accuracy of bootstrap intervals for asymptotically pivotal statistics. In finite samples, these statistics often are not even approximately pivotal. As a result, Edgeworth expansion arguments for pivotal statistics do not apply, and the only way to compare the accuracy of alternative intervals is by simulation. The paper documents that percentile-t intervals based on asymptotic pivots tend to behave erratically in small samples and may be much less accurate than bootstrap intervals based on nonpivotal statistics. It is also shown that bootstrap intervals can be very accurate in the absence of asymptotic refinements, and that there are huge differences in coverage accuracy among asymptotically equivalent intervals that cannot be explained by Edgeworth expansion arguments.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Michigan - Center for Research on Economic & Social Theory in its series Papers with number 98-04.

as in new window
Length: 34 pages
Date of creation: 1998
Date of revision:
Handle: RePEc:fth:michet:98-04

Contact details of provider:
Postal: UNIVERSITY OF MICHIGAN, DEPARTMENT OF ECONOMICS CENTER FOR RESEARCH ON ECONOMIC AND SOCIAL THEORY, ANN ARBOR MICHIGAN U.S.A.

Related research

Keywords: TIME SERIES ; ECONOMETRICS;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jeremy Berkowitz & Ionel Birgean & Lutz Kilian, 1999. "On the finite-sample accuracy of nonparametric resampling algorithms for economic time series," Finance and Economics Discussion Series 1999-04, Board of Governors of the Federal Reserve System (U.S.).

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fth:michet:98-04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.