Advanced Search
MyIDEAS: Login to save this paper or follow this series

Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit

Contents:

Author Info

Abstract

This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest via its kernel function. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://doc.rero.ch/lm.php?url=1000,43,2,20121204123116-BE/WP_DQE_09.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland in its series DQE Working Papers with number 9.

as in new window
Length: 31 pages
Date of creation: 23 Jun 2008
Date of revision: 07 Jan 2009
Publication status: Published in Journal of Statistical Software, 2009, vol. 29, no.3, pp.1--31.
Handle: RePEc:fri:dqewps:wp0009

Contact details of provider:
Postal: Bd de Pérolles 90, CH-1700 Fribourg
Phone: +41 26 300 8200
Fax: +41 26 300 9725
Email:
Web page: http://www.unifr.ch/ses/
More information through EDIRC

Related research

Keywords: adaptive mixture; Student-t distributions; importance sampling; independence chain Metropolis-Hastings algorithm; Bayesian; R software;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Lennart Hoogerheide & Herman K. van Dijk, 2008. "Possibly Ill-behaved Posteriors in Econometric Models," Tinbergen Institute Discussion Papers 08-036/4, Tinbergen Institute, revised 18 Apr 2008.
  2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  3. HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," CORE Discussion Papers 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
  5. Heij, Christiaan & de Boer, Paul & Franses, Philip Hans & Kloek, Teun & van Dijk, Herman K., 2004. "Econometric Methods with Applications in Business and Economics," OUP Catalogue, Oxford University Press, number 9780199268016, October.
  6. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
  7. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  8. Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit," DQE Working Papers 9, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
  9. Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "AdMit: Adaptive Mixtures of Student-t Distributions," DQE Working Papers 10, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
  10. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
  11. Michael Dueker, 1995. "Markov switching in GARCH processes and mean reverting stock market volatility," Working Papers 1994-015, Federal Reserve Bank of St. Louis.
  12. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
  13. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  14. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
  15. Sylvia Frühwirth-Schnatter, 2001. "Fully Bayesian Analysis of Switching Gaussian State Space Models," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(1), pages 31-49, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nalan Basturk & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "The R Package MitISEM: Mixture of Student-t Distributions using Importance Sampling Weighted Expectation Maximization for Efficient and Robust Simulation," Tinbergen Institute Discussion Papers 12-096/III, Tinbergen Institute.
  2. David, D. & Hoogerheide, L.F. & van Dijk, H.K., 2008. "The AdMit Package," Econometric Institute Research Papers EI 2008-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  3. Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "AdMit: Adaptive Mixtures of Student-t Distributions," DQE Working Papers 10, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
  4. Nikolaus Hautsch & Fuyu Yang, 2010. "Bayesian Inference in a Stochastic Volatility Nelson-Siegel Model," SFB 649 Discussion Papers SFB649DP2010-004, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  5. Kleppe, Tore Selland & Liesenfeld, Roman, 2014. "Efficient importance sampling in mixture frameworks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 449-463.
  6. Kleppe, Tore Selland & Liesenfeld, Roman, 2011. "Efficient high-dimensional importance sampling in mixture frameworks," Economics Working Papers 2011,11, Christian-Albrechts-University of Kiel, Department of Economics.
  7. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
  8. Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012. "A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
  9. David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, . "Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit," Journal of Statistical Software, American Statistical Association, vol. 29(i03).
  10. David Ardia & Lennart Hoogerheide & Herman K. van Dijk, 2009. "To Bridge, to Warp or to Wrap? A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihoods," Tinbergen Institute Discussion Papers 09-017/4, Tinbergen Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fri:dqewps:wp0009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ivo raemy).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.