IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2018_06.html
   My bibliography  Save this paper

Can pecuniary and environmental incentives via SMS messaging make households adjust their intra-day electricity demand to a fluctuating production?

Author

Listed:
  • Niels Framroze Møller

    (DTU Management Engineering, Technical University of Denmark)

  • Laura Mørch Andersen

    (Department of Food and Resource Economics, University of Copenhagen)

  • Lars Gårn Hansen

    (Department of Food and Resource Economics, University of Copenhagen)

  • Carsten Lynge Jensen

    (Department of Food and Resource Economics, University of Copenhagen)

Abstract

The increasing deployment of renewables introduces substantial variability into the production of electricity, requiring demand to be more movable across time. We analyze data from a large Danish fi eld experiment (2015-2016) to investigate whether households can be prompted, via SMS messages, to move electricity consumption, and if so, whether these are motivated by pecuniary or environmental motives. To take heterogeneity fully into account we fi rst use general-to-speci c-based automatic model selection which allows for a different time-series regression for each of the 1488 households studied. From this we obtain a cross-section of estimated SMS effects which we then regress on the motive type. Since households can opt out there is a risk of self-selection. We therefore control for the size, income and average consumption of the household, and the age, educational- and labor market status of the SMS recipient. The results suggest that SMS messages can to some extent motivate households to move consumption. A stronger fi nancial motive seems more effective, whereas a purely environmental motive actually reduces the displaced amount. However, mixing financial and environmental motives seems the most effective. Finally, women and elderly people are more inclined to move consumption.

Suggested Citation

  • Niels Framroze Møller & Laura Mørch Andersen & Lars Gårn Hansen & Carsten Lynge Jensen, 2018. "Can pecuniary and environmental incentives via SMS messaging make households adjust their intra-day electricity demand to a fluctuating production?," IFRO Working Paper 2018/06, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2018_06
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2018/IFRO_WP_2018_06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    2. Maria Gleerup & Anders Larsen & Soren Leth-Petersen & Mikael Togeby, 2010. "The Effect of Feedback by Text Message (SMS) and Email on Household Electricity Consumption: Experimental Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-132.
    3. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    4. Caves, Douglas W. & Christensen, Laurits R. & Herriges, Joseph A., 1984. "Consistency of residential customer response in time-of-use electricity pricing experiments," Journal of Econometrics, Elsevier, vol. 26(1-2), pages 179-203.
    5. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    6. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    7. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    8. Faruqui, Ahmad & George, Stephen S., 2002. "The Value of Dynamic Pricing in Mass Markets," The Electricity Journal, Elsevier, vol. 15(6), pages 45-55, July.
    9. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    10. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    11. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    12. Alexander Martin Tureczek & Per Sieverts Nielsen, 2017. "Structured Literature Review of Electricity Consumption Classification Using Smart Meter Data," Energies, MDPI, vol. 10(5), pages 1-19, April.
    13. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    14. Faruqui, Ahmad & Malko, J.Robert, 1983. "The residential demand for electricity by time-of-use: A survey of twelve experiments with peak load pricing," Energy, Elsevier, vol. 8(10), pages 781-795.
    15. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    16. David F. Hendry, 2009. "The Methodology of Empirical Econometric Modeling: Applied Econometrics Through the Looking-Glass," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 1, pages 3-67, Palgrave Macmillan.
    17. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Møller, Niels Framroze & Andersen, Laura Mørch & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2019. "Can pecuniary and environmental incentives via SMS messaging make households adjust their electricity demand to a fluctuating production?," Energy Economics, Elsevier, vol. 80(C), pages 1050-1058.
    2. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    3. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    4. Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    5. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    6. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    7. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    8. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    9. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    10. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    11. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    12. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    13. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
    14. Qiu, Yueming & Colson, Gregory & Wetzstein, Michael E., 2017. "Risk preference and adverse selection for participation in time-of-use electricity pricing programs," Resource and Energy Economics, Elsevier, vol. 47(C), pages 126-142.
    15. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    16. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    17. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    18. Kazutoshi Tsuda & Michinori Uwasu & Keishiro Hara & Yukari Fuchigami, 2017. "Approaches to induce behavioral changes with respect to electricity consumption," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 30-38, March.
    19. Leighton Vaughan Williams & J. James Reade, 2016. "Prediction Markets, Social Media and Information Efficiency," Kyklos, Wiley Blackwell, vol. 69(3), pages 518-556, August.
    20. Søren Johansen & Lukasz Gatarek, 2014. "Optimal hedging with the cointegrated vector autoregressive model," CREATES Research Papers 2014-40, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Household-level electricity demand; Automatic general-to-specific model selection; SMS messaging; field experimental data;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2018_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.