Advanced Search
MyIDEAS: Login

On Tail Index Estimation Using Dependent,Heterogenous Data

Contents:

Author Info

  • Jonathan B. Hill

    ()
    (Department of Economics, Florida International University)

Abstract

In this paper we analyze the asymptotic properties of the popularly used distribution tail estimator by B. Hill (1975), for heavy-tailed heterogenous, dependent processes. We prove the Hill estimator is weakly consistent for functionals of mixingales and L1-approximable processes with regularly varying tails, covering ARMA, GARCH, and many IGARCH and FIGARCH processes. Moreover, for functionals of processes near epoch-dependent on a mixing process, we prove a Gaussian distribution limit exists. In this case, as opposed to all existing prior results in the literature, we do not require the limiting variance of the Hill estimator to be bounded, and we develop a Newey-West kernel estimator of the variance. We expedite the theory by defining "extremal mixingale" and "extremal NED" properties to hold exclusively in the extreme distribution tails, disbanding with dependence restrictions in the non-extremal support, and prove a broad class of linear processes are extremal NED. We demonstrate that for greater degrees of serial dependence more tail information is required in order to ensure asymptotic normality, both in theory and practice.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://casgroup.fiu.edu/pages/docs/2247/1275232484_05-12.pdf
File Function: First version, 2005
Download Restriction: no

Bibliographic Info

Paper provided by Florida International University, Department of Economics in its series Working Papers with number 0512.

as in new window
Length: 43 pages
Date of creation: Aug 2005
Date of revision:
Handle: RePEc:fiu:wpaper:0512

Contact details of provider:
Postal: Miami, FL 33199
Phone: (305) 348-2316
Fax: (305) 348-1524
Web page: http://casgroup.fiu.edu/Economics/
More information through EDIRC

Related research

Keywords: Hill estimator; regular variation; infinite variance; near epoch dependence; mixingales;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(03), pages 313-329, September.
  2. Prasad Bidarkota & J Huston Mcculloch, 2004. "Testing for persistence in stock returns with GARCH-stable shocks," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 256-265.
  3. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
  4. repec:cup:etheor:v:13:y:1997:i:3:p:353-67 is not listed on IDEAS
  5. B. N. Cheng & S. T. Rachev, 1995. "Multivariate Stable Futures Prices," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 133-153.
  6. Davidson, James, 1993. "An L1-convergence theorem for heterogeneous mixingale arrays with trending moments," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 301-304, March.
  7. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  8. Prasad V. Bidarkota & J. Huston McCulloch, 1998. "Optimal univariate inflation forecasting with symmetric stable shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(6), pages 659-670.
  9. Peter C.B. Phillips & Mico Loretan, 1989. "The Durbin-Watson Ratio Under Infinite Variance Errors," Cowles Foundation Discussion Papers 898R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1989.
  10. repec:att:wimass:9208 is not listed on IDEAS
  11. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(03), pages 353-367, June.
  12. Akgiray, Vedat & Booth, G Geoffrey, 1988. "The Stable-Law Model of Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 51-57, January.
  13. Davidson, James, 1993. "The Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes: The Asymptotically Degenerate Case," Econometric Theory, Cambridge University Press, vol. 9(03), pages 402-412, June.
  14. Chan, Ngai Hang & Tran, Lanh Tat, 1989. "On the First-Order Autoregressive Process with Infinite Variance," Econometric Theory, Cambridge University Press, vol. 5(03), pages 354-362, December.
  15. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
  16. Jonathan B. Hill, 2004. "Gaussian Tests of "Extremal White Noise" for Dependent, Heterogeneous, Heavy Tailed Time Series with an Application," Econometrics 0411014, EconWPA, revised 09 Dec 2004.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jonathan B. Hill, 2005. "Gaussian Tests of "Extremal White Noise" for Dependent, Heterogeneous, Heavy Tailed Strochastic Processes with an Application," Working Papers 0513, Florida International University, Department of Economics.
  2. Ilić, Ivana, 2012. "On tail index estimation using a sample with missing observations," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 949-958.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:fiu:wpaper:0512. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sheng Guo).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.