Advanced Search
MyIDEAS: Login to save this paper or follow this series

Density selection and combination under model ambiguity: an application to stock returns

Contents:

Author Info

  • Stefania D'Amico
Registered author(s):

    Abstract

    This paper proposes a method for predicting the probability density of a variable of interest in the presence of model ambiguity. In the first step, each candidate parametric model is estimated minimizing the Kullback-Leibler 'distance' (KLD) from a reference nonparametric density estimate. Given that the KLD represents a measure of uncertainty about the true structure, in the second step, its information content is used to rank and combine the estimated models. The paper shows that the KLD between the nonparametric and the parametric density estimates is asymptotically normally distributed. This result leads to determining the weights in the model combination, using the distribution function of a Normal centered on the average performance of all plausible models. Consequently, the final weight is determined by the ability of a given model to perform better than the average. As such, this combination technique does not require the true structure to belong to the set of competing models and is computationally simple. I apply the proposed method to estimate the density function of daily stock returns under different phases of the business cycle. The results indicate that the double Gamma distribution is superior to the Gaussian distribution in modeling stock returns, and that the combination outperforms each individual candidate model both in- and out-of-sample.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.federalreserve.gov/pubs/feds/2005/200509/200509abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2005/200509/200509pap.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Board of Governors of the Federal Reserve System (U.S.) in its series Finance and Economics Discussion Series with number 2005-09.

    as in new window
    Length:
    Date of creation: 2005
    Date of revision:
    Handle: RePEc:fip:fedgfe:2005-09

    Contact details of provider:
    Postal: 20th Street and Constitution Avenue, NW, Washington, DC 20551
    Web page: http://www.federalreserve.gov/
    More information through EDIRC

    Order Information:
    Web: http://www.federalreserve.gov/pubs/feds/fedsorder.html

    Related research

    Keywords: Rate of return ; Econometric models ; Stocks;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. L. Wade, 1988. "Review," Public Choice, Springer, vol. 58(1), pages 99-100, July.
    2. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    3. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    4. J. L. Knight & S. E. Satchell & K. C. Tran, 1995. "Statistical modelling of asymmetric risk in asset returns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(3), pages 155-172.
    5. Giacomini, Raffaella, 2002. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests: Asymptotic and Bootstrap Methods," University of California at San Diego, Economics Working Paper Series qt59s2g5j5, Department of Economics, UC San Diego.
    6. Ebrahimi, Nader & Maasoumi, Esfandiar & Soofi, Ehsan S., 1999. "Ordering univariate distributions by entropy and variance," Journal of Econometrics, Elsevier, vol. 90(2), pages 317-336, June.
    7. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, . "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    8. David Schmeidler, 2000. "Cognitive Foundations of Inductive Inference and Probability: An Axiomatic Approach," Working Papers 00-07, Ohio State University, Department of Economics.
    9. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    10. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    11. Itzhak Gilboa & David Schmeidler, 2003. "Inductive Inference: An Axiomatic Approach," Econometrica, Econometric Society, vol. 71(1), pages 1-26, January.
    12. Raman Uppal & Tan Wang, 2003. "Model Misspecification and Underdiversification," Journal of Finance, American Finance Association, vol. 58(6), pages 2465-2486, December.
    13. Robinson, P M, 1991. "Consistent Nonparametric Entropy-Based Testing," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 437-53, May.
    14. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, 05.
    15. Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
    16. Lars Peter Hansen & Thomas J. Sargent, 2001. "Acknowledging Misspecification in Macroeconomic Theory," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 4(3), pages 519-535, July.
    17. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
    18. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-60, May.
    19. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
    20. repec:cup:etheor:v:10:y:1994:i:2:p:316-56 is not listed on IDEAS
    21. Cogley, Timothy W. & Morozov, Sergei & Sargent, Thomas J., 2003. "Bayesian fan charts for UK inflation: Forecasting and sources of uncertainty in an evolving monetary system," CFS Working Paper Series 2003/44, Center for Financial Studies (CFS).
    22. Doron Avramov, . "Stock-Return Predictability and Model Uncertainty," Rodney L. White Center for Financial Research Working Papers 12-00, Wharton School Rodney L. White Center for Financial Research.
    23. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    24. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    25. Skouras, Spyros, 2007. "Decisionmetrics: A decision-based approach to econometric modelling," Journal of Econometrics, Elsevier, vol. 137(2), pages 414-440, April.
    26. Fan, Yanqin, 1994. "Testing the Goodness of Fit of a Parametric Density Function by Kernel Method," Econometric Theory, Cambridge University Press, vol. 10(02), pages 316-356, June.
    27. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    28. Zheng, John Xu, 2000. "A Consistent Test Of Conditional Parametric Distributions," Econometric Theory, Cambridge University Press, vol. 16(05), pages 667-691, October.
    29. Avramov, Doron, 2002. "Stock return predictability and model uncertainty," Journal of Financial Economics, Elsevier, vol. 64(3), pages 423-458, June.
    30. Andrew Ang & Geert Bekaert, 2003. "How do Regimes Affect Asset Allocation?," NBER Working Papers 10080, National Bureau of Economic Research, Inc.
    31. Dhrymes, Phoebus J., 1998. "Identification and Kullback information in the GLSEM," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 163-184.
    32. Sawa, Takamitsu, 1978. "Information Criteria for Discriminating among Alternative Regression Models," Econometrica, Econometric Society, vol. 46(6), pages 1273-91, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2005-09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kris Vajs).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.