IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2007.30.html
   My bibliography  Save this paper

A Modelling Framework for Addressing the Synergies between Global Conventions through Land Use Changes: Carbon Sequestration, Biodiversity Conservation, Prevention of Land Degradation and Food Security in Agricultural and Forested Lands in Developing Countries

Author

Listed:
  • Raul Ponce-Hernandez

    (Trent University)

Abstract

This paper proposed a methodological framework for the assessment of carbon stocks and the development and identification of land use, land use change and land management scenarios, whereby enhancing carbon sequestration synergistically increases biodiversity, the prevention of land degradation and food security through the increases in crop yields. The framework integrates satellite image interpretation, computer modelling tools (i.e. software customization of off-the-shelf soil organic matter turnover simulation models) and Geographical Information Systems (GIS). The framework addresses directly and indirectly the cross-cutting ecological concerns foci of major global conventions: climate change, biodiversity, the combat of desertification and food security. Their synergies are targeted by providing procedures for assessing and identifying simultaneously carbon sinks, potential increases in plant diversity, measures to prevent land degradation and enhancements in food security through crop yields, implicit in each land use change and land management scenario. The scenarios aim at providing “win-win” options to decision makers through the framework’s decision support tools. Issues concerning complex model parameterization and spatial representation were tackled through tight coupling soil carbon models to GIS via software customization. Results of applying the framework in the field in two developing countries indicate that reasonably accurate estimates of carbon sequestration can be obtained through modeling; and that alternative best soil organic matter management practices that arrest shifting “slash-and-burn” cultivation and prevent burning and emissions, can be identified. Such options also result in increased crop yields and food security for an average family size in the area, while enhancing biodiversity and preventing land degradation. These options demonstrate that the judicious management of organic matter is central to greenhouse gas mitigation and the attainment of synergistic ecological benefits, which is the concern of global conventions. The framework is to be further developed through successive approximations and refinement in future, extending its applicability to other landscapes.

Suggested Citation

  • Raul Ponce-Hernandez, 2007. "A Modelling Framework for Addressing the Synergies between Global Conventions through Land Use Changes: Carbon Sequestration, Biodiversity Conservation, Prevention of Land Degradation and Food Securit," Working Papers 2007.30, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2007.30
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2007-030.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jones, C. A. & Dyke, P. T. & Williams, J. R. & Kiniry, J. R. & Benson, V. W. & Griggs, R. H., 1991. "EPIC: An operational model for evaluation of agricultural sustainability," Agricultural Systems, Elsevier, vol. 37(4), pages 341-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    3. A. P. Moxey & B. White & R. A. Sanderson & S. P. Rushton, 1995. "An Approach To Linking An Ecological Vegetation Model To An Agricultural Economic Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 381-397, September.
    4. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Vázquez-Montenegro, Ranses José & Durán-Zarabozo, Odil & Baca, Marcio, 2015. "Modelos de impacto en la agricultura teniendo en cuenta los escenarios de la agricultura del cambio climático," Revista Iberoamericana de Bioeconomía y Cambio Climàtico, National Autonomous University of Nicaragua, Leon, vol. 1(1), pages 1-50, July.
    6. Andrew Moxey & Ben White, 1994. "Efficient Compliance With Agricultural Nitrate Pollution Standards," Journal of Agricultural Economics, Wiley Blackwell, vol. 45(1), pages 27-37, January.
    7. Ponce-Hernandez, Raul, 2007. "A Modelling Framework for Addressing the Synergies between Global Conventions through Land Use Changes: Carbon Sequestration, Biodiversity Conservation, Prevention of Land Degradation and Food Securit," Climate Change Modelling and Policy Working Papers 9318, Fondazione Eni Enrico Mattei (FEEM).
    8. Jourdain, Damien & Scopel, Eric & Affholder, Francois, 2001. "The Impact Of Conservation Tillage On The Productivity And Stability Of Maize Cropping Systems: A Case Study In Western Mexico," Economics Working Papers 46549, CIMMYT: International Maize and Wheat Improvement Center.
    9. Ma, Kun & Liu, Junguo & Balkovič, Juraj & Skalský, Rastislav & Azevedo, Ligia B. & Kraxner, Florian, 2016. "Changes in soil organic carbon stocks of wetlands on China's Zoige plateau from 1980 to 2010," Ecological Modelling, Elsevier, vol. 327(C), pages 18-28.
    10. Oriade, Caleb A. & Dillon, Carl R., 1997. "Developments in biophysical and bioeconomic simulation of agricultural systems: a review," Agricultural Economics, Blackwell, vol. 17(1), pages 45-58, October.
    11. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    12. Lakshminarayan, P. G., 1993. "Tradeoffs in balancing multiple objectives of an integrated agricultural economic and environmental system," ISU General Staff Papers 1993010108000011833, Iowa State University, Department of Economics.
    13. Patrick S. Ward & Raymond J. G. M. Florax & Alfonso Flores-Lagunes, 2014. "Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 199-226.
    14. Meetpal S. Kukal & Suat Irmak, 2020. "Evidence of Arithmetical Uncertainty in Estimation of Light and Water Use Efficiency," Sustainability, MDPI, vol. 12(6), pages 1-9, March.
    15. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    16. Juraj Balkovič & Erwin Schmid & Rastislav Skalský & Martina Nováková, 2011. "Modelling soil organic carbon changes on arable land under climate change - a case study analysis of the Kočín farm in Slovakia," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 6(1), pages 30-42.
    17. Pease, James W. & Parsons, Robert L. & Kenyon, David E., 1998. "Economic And Environmental Impacts Of Nutrient Loss Reductions On Dairy And Dairy/Poultry Farms," Report Papers 14827, Virginia Tech, Rural Economic Analysis Program (REAP).
    18. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    19. David R. Oglethorpe, 1995. "Sensitivity Of Farm Plans Under Risk‐Averse Behaviour: A Note On The Environmental Implications," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(2), pages 227-232, May.

    More about this item

    Keywords

    Climate Change; Greenhouse Gas Mitigation; Carbon Sequestration; Soil Organic Matter; Modeling; Land-Use Change; Land Management; Ecological Synergies; Agriculture;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2007.30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.