IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2006.102.html
   My bibliography  Save this paper

Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment

Author

Listed:
  • Kerstin Ronneberger

    (Deutsches Klimarechenzentrum GmbH)

  • Maria Berrittella

    (University of Palermo)

  • Francesco Bosello

    (Fondazione Eni Enrico Mattei and International Centre for Theoretical Physics)

  • Richard S.J. Tol

    (Princeton University, Vrije Universiteit and Hamburg University)

Abstract

In this paper the global agricultural land use model KLUM is coupled to an extended version of the computable general equilibrium model (CGE) GTAP in order to consistently assess the integrated impacts of climate change on global cropland allocation and its implication for economic development. The methodology is innovative as it introduces dynamic economic land-use decisions based also on the biophysical aspects of land into a state-of-the-art CGE; it further allows the projection of resulting changes in cropland patterns on a spatially more explicit level. A convergence test and illustrative future simulations underpin the robustness and potentials of the coupled system. Reference simulations with the uncoupled models emphasize the impact and relevance of the coupling; the results of coupled and uncoupled simulations can differ by several hundred percent.

Suggested Citation

  • Kerstin Ronneberger & Maria Berrittella & Francesco Bosello & Richard S.J. Tol, 2006. "Klum@Gtap: Introducing Biophysical Aspects of Land-Use Decisions Into a General Equilibrium Model A Coupling Experiment," Working Papers 2006.102, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2006.102
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2006-102.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kerstin Ronneberger & Uwe A. Schneider & Richard S.J. Tol, 2005. "Klum: A Simple Model Of Global Agricultural Land Use As A Coupling Tool Of Economy And Vegetation," Working Papers FNU-65, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.
    2. McKibbin, Warwick J. & Wilcoxen, Peter J., 1998. "The theoretical and empirical structure of the G-Cubed model," Economic Modelling, Elsevier, vol. 16(1), pages 123-148, January.
    3. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    4. Lee, Huey-Lin & Thomas Hertel & Brent Sohngen & Navin Ramankutty, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    5. Kerstin Ronneberger & Luca Criscuolo & Wolfgang Knorr & Richard S.J. Tol, 2006. "KLUM@LPJ: Integrating dynamic land-use decisions into a dynamic global vegetation and crop growth model to assess the impacts of a changing climate. A feasibility study for Europe," Working Papers FNU-113, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
    6. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    7. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    8. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    2. Eduardo A. Haddad & Alexandre A. Porsse, Paula C. Pereda, 2012. "Territorial Economic Impacts of Climate Anomalies in Brazil," Working Papers, Department of Economics 2012_20, University of São Paulo (FEA-USP).
    3. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    4. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    5. Dritan Osmani, "undated". "A note on optimal transfer schemes, stable coalition for environmental protection and joint maximization assumption," Working Papers FNU-176, Research unit Sustainability and Global Change, Hamburg University.
    6. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    7. Gary W. Yohe & Richard S.J. Tol & Dean Murphy, 2007. "On Setting Near-term Climate Policy while the Dust Begins to Settle: The Legacy of the Stern Review," Working Papers FNU-129, Research unit Sustainability and Global Change, Hamburg University, revised Mar 2007.
    8. Beckman, Jayson & Hertel, Thomas & Tyner, Wallace, 2011. "Validating energy-oriented CGE models," Energy Economics, Elsevier, vol. 33(5), pages 799-806, September.
    9. Burrell, Alison M., 2008. "Art or science? The challenges of publishing peer reviewed papers based on linked models," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(08), pages 1-4.
    10. Sajedinia, Ehsanreza & Tyner, Wally, 2017. "Use of General Equilibrium Models in Evaluating Biofuels Policies," Conference papers 332885, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    2. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    3. Haddad, Salwa & Britz, Wolfgang & Börner, Jan, 2017. "Impacts Of Increased Forest Biomass Demand In The European Bioeconomy," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261986, German Association of Agricultural Economists (GEWISOLA).
    4. Weslem Rodrigues Faria & Eduardo Amaral Haddad, 2017. "Modeling Land Use And The Effects Of Climate Change In Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-37, February.
    5. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    6. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    7. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    8. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    9. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    10. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    11. Jun Yang & Huanguang Qiu & Jikun Huang & Scott Rozelle, 2008. "Fighting global food price rises in the developing world: the response of China and its effect on domestic and world markets," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 453-464, November.
    12. Alvaro Calzadilla & Tingju Zhu & Katrin Rehdanz & Richard S.J. Tol & Claudia Ringler, "undated". "Economy-wide Impacts of Climate on Agriculture in Sub-Saharan Africa," Working Papers FNU-170, Research unit Sustainability and Global Change, Hamburg University.
    13. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," Conference papers 331729, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Adams, Philip D. & Parmenter, Brian R., 2013. "Computable General Equilibrium Modeling of Environmental Issues in Australia," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 553-657, Elsevier.
    15. Jian Zhang & Denise Eby Konan, 2010. "The Sleeping Giant Awakes: Projecting Global Implications of China's Energy Consumption," Review of Development Economics, Wiley Blackwell, vol. 14(4), pages 750-767, November.
    16. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    17. Alla A. Golub & Thomas W. Hertel, 2012. "Modeling Land-Use Change Impacts Of Biofuels In The Gtap-Bio Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-30.
    18. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    20. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    More about this item

    Keywords

    Land-Use Change; Computable General Equilibrium Modeling; Integrated Assessment; Climate Change;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2006.102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.