IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2017_06.html
   My bibliography  Save this paper

The Influence of Renewable Energy Sources on the Czech Electricity Transmission System

Author

Listed:
  • Karel Janda

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Smetanovo nabrezi 6, 111 01 Prague 1, Czech Republic
    Department of Banking and Insurance, Faculty of Finance and Accounting, University of Economics, Namesti Winstona Churchilla 4, 13067 Prague, Czech Republic)

  • Jan Malek

    (Universiteit van Amsterdam, Amsterdam)

  • Lukas Recka

    (Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Smetanovo nabrezi 6, 111 01 Prague 1, Czech Republic)

Abstract

This paper provides the first academic economic simulation analysis of the impact of increase in predominantly German wind and solar energy production on the Czech electricity transmission network. To assess the exact impact on the transmission grid, updated state-of-the-art techno-economic model ELMOD is employed. Two scenarios for the year 2025 are evaluated on the basis of two representative weeks. The first scenario is considered as baseline and models currently used production mix. The second scenario focuses on the effect of German Energiewende policy on the transmission networks as expected in 2025. The results confirm that higher feed-in of solar and wind power increases the total transport of electricity between transmission system operator areas as well as the average load of lines and volatility of flows. Also, an increase in number of critical high-load hours is observable. Taking into account only the Czech transmission system, considerable rise both in transported volume and volatility are observed only on border transmission lines, not inside the country. Moreover, our qualitative analysis shows that all these mentioned effects are strenghtened by the presence of German-Austrian bidding zone.

Suggested Citation

  • Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
  • Handle: RePEc:fau:wpaper:wp2017_06
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/sci/publication/show/id/5638/lang/cs
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.
    2. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    3. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    4. Bejbl, Jan & Bemš, Julius & Králík, Tomáš & Starý, Oldřich & Vastl, Jaromír, 2014. "New approach to brown coal pricing using internal rate of return methodology," Applied Energy, Elsevier, vol. 133(C), pages 289-297.
    5. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    6. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    7. Burstedde, Barbara, 2012. "From Nodal to Zonal Pricing - A Bottom-Up Approach to the Second-Best," EWI Working Papers 2012-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Pavla Blahova & Karel Janda & Ladislav Kristoufek, 2014. "The Perspectives for Genetically Modified Cellulosic Ethanol in the Czech Republic," Working Papers IES 2014/02, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jan 2014.
    9. Průša, Jan & Klimešová, Andrea & Janda, Karel, 2013. "Consumer loss in Czech photovoltaic power plants in 2010–2011," Energy Policy, Elsevier, vol. 63(C), pages 747-755.
    10. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    11. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Friedrich Kunz and Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    13. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    14. Leuthold, Florian & Weigt, Hannes & von Hirschhausen, Christian, 2008. "ELMOD - A Model of the European Electricity Market," MPRA Paper 65660, University Library of Munich, Germany.
    15. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    16. Friedrich Kunz & Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management," Discussion Papers of DIW Berlin 1551, DIW Berlin, German Institute for Economic Research.
    17. Jan Prusa & Andrea Klimesova & Karel Janda, 2013. "Consumer Loss in Czech Photovoltaic Power Plants," CAMA Working Papers 2013-50, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    19. Milan Scasny & Vitezslav Pisa & Hector Pollit & Unnada Chewpreecha, 2009. "Analyzing Macroeconomic Effects of Environmental Taxation in the Czech Republic with the Econometric E3ME Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(5), pages 460-491, December.
    20. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Levieux, Luis Ignacio & Ocampo-Martinez, Carlos & Inthamoussou, Fernando A. & De Battista, Hernán, 2021. "Predictive management approach for the coordination of wind and water-based power supplies," Energy, Elsevier, vol. 219(C).
    2. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Environmental Impacts of Redispatching in Decarbonizing Electricity Systems: A Spanish Case Study," Working Papers 1-2023, Copenhagen Business School, Department of Economics.
    3. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    2. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    3. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    4. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    6. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    7. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    8. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    9. J. Micha Steinhäuser & Klaus Eisenack, 2015. "Spatial incidence of large-scale power plant curtailment costs," Working Papers V-379-15, University of Oldenburg, Department of Economics, revised Jul 2015.
    10. Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
    11. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    12. Bjørndal, Endre & Bjørndal, Mette & Gribkovskaia, Victoria, 2014. "A Nodal Pricing Model for the Nordic Electricity Market," Discussion Papers 2014/43, Norwegian School of Economics, Department of Business and Management Science.
    13. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    14. Friedrich Kunz and Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    15. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2016. "How much is enough? Optimal support payments in a renewable-rich power system," Energy, Elsevier, vol. 117(P1), pages 300-313.
    16. Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
    17. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 60, pages 176-185.
    18. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    19. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    20. Horn, Henrik & Tangerås, Thomas, 2021. "National Transmission System Operators in an International Electricity Market," Working Paper Series 1394, Research Institute of Industrial Economics.

    More about this item

    Keywords

    Energiewende; wind; solar; transmission networks; ELMOD;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2017_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.