IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2000-50.html
   My bibliography  Save this paper

Weak Convergence of Hedging Strategies of Contingent Claims

Author

Listed:
  • J.L. Prigent
  • O. Scaillet

Abstract

This paper presents results on the convergence for hedging strategies in the setting of incomplete financial markets. We examine the convergence of the so-called locally risk-minimizing strategy. It is proved that such a choice for the trading strategy, when perfect hedging of contingent claims is infeasible, is robust under weak convergence. Several fundamental examples, such as trinomial trees and stochastic volatility models, extracted from the financial modeling literature illustrate this property for both deterministic and random time intervals shrinking to zero.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • J.L. Prigent & O. Scaillet, 2000. "Weak Convergence of Hedging Strategies of Contingent Claims," THEMA Working Papers 2000-50, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2000-50
    as

    Download full text from publisher

    File URL: http://www.u-cergy.fr/IMG/documents//2000-50Prigent.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    2. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    3. O. Scaillet & J.-L. Prigent & J.-P. Lesne, 2000. "Convergence of discrete time option pricing models under stochastic interest rates," Finance and Stochastics, Springer, vol. 4(1), pages 81-93.
    4. Prigent, Jean-Luc & Renault, Olivier & Scaillet, Olivier, 2004. "Option pricing with discrete rebalancing," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 133-161, January.
    5. Runggaldier, Wolfgang J. & Martin Schweizer, 1995. "Convergence of Option Values under Incompleteness," Discussion Paper Serie B 333, University of Bonn, Germany.
    6. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    7. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    8. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413, October.
    9. Naoto Kunitomo & Masayuki Ikeda, 2000. "Correction: Pricing Options with Curved Boundaries (Mathematical Finance 1992, 2, 275–297)," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 459-459, October.
    10. repec:crs:wpaper:9961 is not listed on IDEAS
    11. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Adam & Hamza Cherrat & Mohamed Houkari & Jean-Paul Laurent & Jean-Luc Prigent, 2022. "On the risk management of demand deposits: quadratic hedging of interest rate margins," Annals of Operations Research, Springer, vol. 313(2), pages 1319-1355, June.
    2. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    3. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2015. "Non-Gaussian GARCH option pricing models and their diffusion limits," European Journal of Operational Research, Elsevier, vol. 247(3), pages 820-830.
    4. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    5. Maciej Augustyniak & Alexandru Badescu, 2021. "On the computation of hedging strategies in affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 710-735, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prigent, Jean-Luc & Renault, Olivier & Scaillet, Olivier, 2004. "Option pricing with discrete rebalancing," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 133-161, January.
    2. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    3. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    5. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    6. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    9. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    10. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Chen, Yan & Wang, Xuancheng, 2015. "A hybrid stock trading system using genetic network programming and mean conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 240(3), pages 861-871.
    13. repec:dau:papers:123456789/5374 is not listed on IDEAS
    14. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    15. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    16. Adam Kolkiewicz & Ken Tan, 2004. "Volatility Risk For Regime-Switching Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(4), pages 127-145.
    17. Hardy Hulley & Thomas A. McWalter, 2015. "Quadratic Hedging of Basis Risk," JRFM, MDPI, vol. 8(1), pages 1-20, February.
    18. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Dec 2023.
    19. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    20. Damiano Brigo & Francesco Rapisarda & Abir Sridi, 2013. "The arbitrage-free Multivariate Mixture Dynamics Model: Consistent single-assets and index volatility smiles," Papers 1302.7010, arXiv.org, revised Sep 2014.
    21. Naoto Kunitomo & Yong‐Jin Kim, 2007. "Effects Of Stochastic Interest Rates And Volatility On Contingent Claims," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 71-106, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2000-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.