Advanced Search
MyIDEAS: Login to save this paper or follow this series

Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects

Contents:

Author Info

  • Garland Durham
Registered author(s):

    Abstract

    Techniques for simulated maximum likelihood (SML) estimation, filtering, and assessing the fit of stochastic volatility models are examined. Both one- and two-factor models (with leverage effects) are considered. The techniques are computationally efficient, robust, straightforward to implement, and easy to adapt to new models. Using these techniques, it is possible to estimate single-factor models over data sets of several thousand observations in several seconds. The computational efficiency of the techniques means that Monte Carlo studies assessing both the small sample statistical properties as well as the numerical properties of the estimators are easy to do. Such studies are important for all simulation estimators, including simulation-based Bayesian and method of moments estimators. The application looks at S\&P 500 index returns. Even the simple single-factor models adequately capture the dynamics of volatility; the problem is to get the shape of the returns distribution right. Although including a second volatility factor improves the fit over the basic single-factor models, a new formulation of the SV-t model (a single factor model, but with $t$ rather than normal errors in the observation equation) provides the best fit. However, all the models considered fail in a similar manner: they are unable to capture the left tail of the distribution. Fitting this part of the distribution is important for option-pricing and risk management. Although it may be possible to come up with ad hoc parametric models that fit particular data series and sample periods, a promising alternative might be to look at single-factor models with flexible forms for the error distributions

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.biz.uiowa.edu/faculty/gdurham/sv.pdf
    File Function: main text
    Download Restriction: no

    Bibliographic Info

    Paper provided by Econometric Society in its series Econometric Society 2004 North American Summer Meetings with number 294.

    as in new window
    Length:
    Date of creation: 11 Aug 2004
    Date of revision:
    Handle: RePEc:ecm:nasm04:294

    Contact details of provider:
    Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Email:
    Web page: http://www.econometricsociety.org/pastmeetings.asp
    More information through EDIRC

    Related research

    Keywords: stochastic volatility; simulation-based estimation; model diagnostics;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Kim, Sangjoon & Shephard, Neil & Chib, Siddhartha, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 361-93, July.
    2. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.
    5. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-91, July.
    6. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
    7. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    8. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    9. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    10. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
    11. Neil Shephard & Michael K Pitt, 1995. "Likelihood analysis of non-Gaussian parameter driven models," Economics Papers 15 & 108., Economics Group, Nuffield College, University of Oxford.
    12. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
    13. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    14. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    15. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
    16. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-91, April.
    17. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    18. Neil Shephard, 2005. "Stochastic volatility," Economics Series Working Papers 2005-W17, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.