Advanced Search
MyIDEAS: Login to save this paper or follow this series

Evaluating The Performance Of Non-Experimental Estimators: Evidence From A Randomized Ui Program

Contents:

Author Info

  • Jose Galdo
Registered author(s):

    Abstract

    One of the lessons of the treatment effects literature is the lack of consensus about the ability of statistical and econometric methods to replicate experimental estimates. In this paper, we provide new evidence using an unusual unemployment insurance experiment that allows the identification of discontinuities in the assignment mechanism. In particular, we use a set of regression functions and matching estimators based on kernel methods with mixed categorical and continuous data. A crucial issue with the kernel approach is the choice of the smoothing parameters. We develop a leave-one-out cross-validation algorithm that minimizes the mean square error of the average treatment effect on the treated weighting each comparison unit according to their distribution of covariates in the support region. Two main findings emerge. First, local constant and nearest-neighbor matching on kernel-based propensity score with mixed categorical and continuous data produces a closer approximation to the experimental estimates than traditional parametric propensity score models do. Second, the regression-discontinuity design emerges as a promising method for solving the evaluation problem. When restricted to sample observations in the neighborhood of the discontinuity points, the estimates are close approximation to the experimental estimates and are robust across different subsamples and estimators.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Paper provided by Econometric Society in its series Econometric Society 2004 Latin American Meetings with number 92.

    as in new window
    Length:
    Date of creation: 11 Aug 2004
    Date of revision:
    Handle: RePEc:ecm:latm04:92

    Contact details of provider:
    Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Email:
    Web page: http://www.econometricsociety.org/pastmeetings.asp
    More information through EDIRC

    Related research

    Keywords: Treatment Effects; Kernels with Mixed Data; Cross-Validation; Matching; Regression-Discontinuity Design;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:92. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.