Advanced Search
MyIDEAS: Login

A Nonparametric Model of Frontiers

Contents:

Author Info

  • Carlos Martins-FIlho
  • Feng Yao

Abstract

In this paper we propose a nonparametric regression frontier model that assumes no specific parametric family of densities for the unobserved stochastic component that represents efficiency in the model. Nonparametric estimation of the regression frontier is obtained using a local linear estimator that is shown to be consistent and $\sqrt{nh_n}$ asymptotically normal under standard assumptions. The estimator we propose envelops the data but is not inherently biased as Free Disposal Hull - FDH or Data Envelopment Analysis - DEA estimators. It is also more robust to extreme values than the aforementioned estimators. A Monte Carlo study is performed to provide preliminary evidence on the estimator's finite sample properties and to compare its performance to a bias corrected FDH estimato

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/esLATM04/up.16430.1081468379.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Econometric Society in its series Econometric Society 2004 Latin American Meetings with number 102.

as in new window
Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:latm04:102

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/pastmeetings.asp
More information through EDIRC

Related research

Keywords: nonparametric regression frontier; local linear estimation; U statistics.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-30, November.
  2. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
  3. Gijbels, Irène & Mammen, Enno & Park, Byeong U. & Simar, Léopold, 1998. "On estimation of monotone and concave frontier functions," SFB 373 Discussion Papers 1998,9, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  4. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(06), pages 855-877, December.
  5. Rafik Baccouche & Mokhtar Kouki, 2003. "Stochastic Production Frontier and Technical Inefficiency: A Sensitivity Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 22(1), pages 79-91.
  6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  7. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-63, July.
  8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  9. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  10. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
  11. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-11, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:102. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.