Advanced Search
MyIDEAS: Login

A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis

Contents:

Author Info

  • Nielsen, Morten

    (Cornell U and CREATES)

Abstract

This paper presents a family of simple nonparametric unit root tests indexed by one parameter, d, and containing Breitung's (2002) test as the special case d = 1. It is shown that (i) each member of the family with d > 0 is consistent, (ii) the asymptotic distribution depends on d, and thus reects the parameter chosen to implement the test, and (iii) since the asymptotic distribution depends on d and the test remains consistent for all d > 0, it is possible to analyze the power of the test for different values of d. The usual Phillips-Perron or Dickey-Fuller type tests are characterized by tuning parameters (bandwidth, lag length, etc.), i.e. parameters which change the test statistic but are not reected in the asymptotic distribution, and thus have none of these three properties. It is shown that members of the family with d

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.arts.cornell.edu/econ/CAE/08-05.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.arts.cornell.edu/econ/CAE/08-05.pdf [301 Moved Permanently]--> http://www.economics.cornell.edu/CAE/08-05.pdf). If this is indeed the case, please notify ()
Download Restriction: no

Bibliographic Info

Paper provided by Cornell University, Center for Analytic Economics in its series Working Papers with number 08-05.

as in new window
Length:
Date of creation: May 2008
Date of revision:
Handle: RePEc:ecl:corcae:08-05

Contact details of provider:
Postal: 402 Uris Hall, Ithaca, NY 14853
Phone: (607) 255-9901
Fax: (607) 255-2818
Web page: http://www.arts.cornell.edu/econ/CAE/workingpapers.html
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  2. Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
  3. Yoosoon Chang & Joon Y. Park, 2003. "A Sieve Bootstrap For The Test Of A Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 379-400, 07.
  4. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  5. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
  6. Nielsen, Morten, 2008. "A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis," Working Papers 08-05, Cornell University, Center for Analytic Economics.
  7. Vogelsang, Timothy J, 1998. "Testing for a Shift in Mean without Having to Estimate Serial-Correlation Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 73-80, January.
  8. Davidson, James & de Jong, Robert M., 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals Ii," Econometric Theory, Cambridge University Press, vol. 16(05), pages 643-666, October.
  9. Peter C.B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Cowles Foundation Discussion Papers 1189, Cowles Foundation for Research in Economics, Yale University.
  10. Franses, Philip Hans & Haldrup, Niels, 1994. "The Effects of Additive Outliers on Tests for Unit Roots and Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 471-78, October.
  11. Breitung, Jorg & Taylor, A. M. Robert, 2003. "Corrigendum to "Nonparametric tests for unit roots and cointegration" [J. Econom. 108 (2002) 343-363]," Journal of Econometrics, Elsevier, vol. 117(2), pages 401-404, December.
  12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  13. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
  14. Shin, Yongcheol & Schmidt, Peter, 1992. "The KPSS stationarity test as a unit root test," Economics Letters, Elsevier, vol. 38(4), pages 387-392, April.
  15. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
  16. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
  17. Stephen J. Leybourne & Paul Newbold, 1999. "The behaviour of Dickey-Fuller and Phillips-Perron tests under the alternative hypothesis," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 92-106.
  18. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
  19. Hualde, Javier, 2006. "Unbalanced Cointegration," Econometric Theory, Cambridge University Press, vol. 22(05), pages 765-814, October.
  20. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  21. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
  22. Agiakloglou, Christos & Newbold, Paul, 1996. "The balance between size and power in Dickey-Fuller tests with data-dependent rules for the choice of truncation lag," Economics Letters, Elsevier, vol. 52(3), pages 229-234, September.
  23. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
  24. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  25. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, 07.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Morten Ørregaard Nielsen, 2008. "A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic," Working Papers 1185, Queen's University, Department of Economics.
  2. Nielsen, Morten, 2008. "A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis," Working Papers 08-05, Cornell University, Center for Analytic Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:08-05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.