IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/1709.html
   My bibliography  Save this paper

Modeling the Value of Flexible Heat Pumps

Author

Listed:
  • Bjoern Felten
  • Christoph Weber

    (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen (Campus Essen))

Abstract

Demand side management has been proposed as one means to improve integration of high shares of nondispatchable renewables-based electricity generation. Among other technologies, residential heat pumps are seen as suitable application for demand side management. Thus, we present a model of an air-water heat pump combined with a thermal energy storage. This heating system supplies heat to a floor-heated building. All subsystem dynamics (thermal energy storage, heating zone, water circuit of the floor heating, heated floor) are modeled in detail. That is dynamics are described by differential equations which are based on thermodynamic first principles. In terms of heat pump operation, we derive several model-predictive control strategies following different objectives. These strategies aim at the minimzation of electricity consumption, procurement prices or operational costs. The difference in operational costs of the flexible operation and of the non-optimized operation represents the value of this flexibility option. The model is designed to assess manifold technical set-ups and economic conditions and, thereby, lays the foundation for further detailed analyses.

Suggested Citation

  • Bjoern Felten & Christoph Weber, "undated". "Modeling the Value of Flexible Heat Pumps," EWL Working Papers 1709, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
  • Handle: RePEc:dui:wpaper:1709
    as

    Download full text from publisher

    File URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Arbeitspapiere/RePEc/pdf/wp1709_ModelingTheValueOfFlexibleHeatPumps.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
    2. Kallabis, Thomas & Pape, Christian & Weber, Christoph, 2016. "The plunge in German electricity futures prices – Analysis using a parsimonious fundamental model," Energy Policy, Elsevier, vol. 95(C), pages 280-290.
    3. Veldman, Else & Gibescu, Madeleine & Slootweg, Han (J.G.) & Kling, Wil L., 2013. "Scenario-based modelling of future residential electricity demands and assessing their impact on distribution grids," Energy Policy, Elsevier, vol. 56(C), pages 233-247.
    4. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    5. Patteeuw, Dieter & Henze, Gregor P. & Helsen, Lieve, 2016. "Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits," Applied Energy, Elsevier, vol. 167(C), pages 80-92.
    6. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    7. Bjoern Felten & Jessica Raasch & Christoph Weber, 2017. "Photovoltaics and Heat Pumps - Limitations of Local Pricing Mechanisms," EWL Working Papers 1702, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Feb 2017.
    8. Carvalho, Anabela Duarte & Mendrinos, Dimitris & De Almeida, Anibal T., 2015. "Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 755-768.
    9. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jessica Raasch, "undated". "Flexible Use of Residential Heat Pumps - Possibilities and Limits of Market Participation," EWL Working Papers 1802, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Mar 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    2. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    3. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2017. "A flexible control strategy of plug-in electric vehicles operating in seven modes for smoothing load power curves in smart grid," Energy, Elsevier, vol. 118(C), pages 197-208.
    6. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    7. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    8. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    9. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    10. Kristo Helin & Behnam Zakeri & Sanna Syri, 2018. "Is District Heating Combined Heat and Power at Risk in the Nordic Area?—An Electricity Market Perspective," Energies, MDPI, vol. 11(5), pages 1-19, May.
    11. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
    12. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    13. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    14. Kirkerud, J.G. & Nagel, N.O. & Bolkesjø, T.F., 2021. "The role of demand response in the future renewable northern European energy system," Energy, Elsevier, vol. 235(C).
    15. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
    16. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    17. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    18. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    19. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    20. Kordas, Olga & Nikiforovich, Eugene, 2019. "A phenomenological theory of steady-state vertical geothermal systems: A novel approach," Energy, Elsevier, vol. 175(C), pages 23-35.

    More about this item

    Keywords

    Heat Pump; Model-Predictive Control; Real-Time Pricing; Demand Side Management.;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:1709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.