Advanced Search
MyIDEAS: Login to save this paper or follow this series

Optimal Forecasts in the Presence of Structural Breaks

Contents:

Author Info

  • M Hashem Pesaran
  • Andreas Pick
  • Mikhail Pranovich

Abstract

This paper considers the problem of forecasting under continuous and discrete structural breaks and proposes weighting observations to obtain optimal forecasts in the MSFE sense. We derive optimal weights for continuous and discrete break processes. Under continuous breaks, our approach recovers exponential smoothing weights. Under discrete breaks, we provide analytical expressions for the weights in models with a single regressor and asymptotically for larger models. It is shown that in these cases the value of the optimal weight is the same across observations within a given regime and differs only across regimes. In practice, where information on structural breaks is uncertain a forecasting procedure based on robust weights is proposed. Monte Carlo experiments and an empirical application to the predictive power of the yield curve analyze the performance of our approach relative to other forecasting methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.dnb.nl/en/binaries/Working%20Paper%20327_tcm47-264135.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Netherlands Central Bank, Research Department in its series DNB Working Papers with number 327.

as in new window
Length:
Date of creation: Dec 2011
Date of revision:
Handle: RePEc:dnb:dnbwpp:327

Contact details of provider:
Postal: Postbus 98, 1000 AB Amsterdam
Web page: http://www.dnb.nl/en/
More information through EDIRC

Related research

Keywords: Forecasting; structural breaks; optimal weights; robust weights; exponential smoothing;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Branch, William A. & Evans, George W., 2006. "A simple recursive forecasting model," Economics Letters, Elsevier, vol. 91(2), pages 158-166, May.
  2. Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  3. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
  4. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
  5. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  6. M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2010. "Variable Selection, Estimation and Inference for Multi-period Forecasting Problems," DNB Working Papers 250, Netherlands Central Bank, Research Department.
  7. Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo Group Munich.
  8. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2000. "How stable is the predictive power of the yield curve? evidence from Germany and the United States," Staff Reports 113, Federal Reserve Bank of New York.
  9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-56, July.
  10. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
  11. Filippo Altissimo & Valentina Corradi, 2000. "Strong Rules for Detecting the Number of Breaks in a Time Series," Econometric Society World Congress 2000 Contributed Papers 0574, Econometric Society.
  12. Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
  13. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
  14. Clements, Michael P. & Hendry, David F., 2006. "Forecasting with Breaks," Handbook of Economic Forecasting, Elsevier.
  15. Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2004. "‘Forecasting Time Series Subject to Multiple Structural Breaks’," Cambridge Working Papers in Economics 0433, Faculty of Economics, University of Cambridge.
  16. Donald W.K. Andrews & Inpyo Lee & Werner Ploberger, 1992. "Optimal Changepoint Tests for Normal Linear Regression," Cowles Foundation Discussion Papers 1016, Cowles Foundation for Research in Economics, Yale University.
  17. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
  18. Rossi, Barbara & Giacomini, Raffaella, 2005. "How Stable is the Forecasting Performance of the Yield Curve for Outpot Growth?," Working Papers 05-08, Duke University, Department of Economics.
  19. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
  20. Pesaran, M.H. & Schuermann, T. & Smit, L.V., 2008. "Forecasting Economic and Financial Variables with Global VARs," Cambridge Working Papers in Economics 0807, Faculty of Economics, University of Cambridge.
  21. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
  22. Atsushi Inoue & Barbara Rossi, 2011. "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1186-1204, November.
  23. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
  24. Pesaran, M. Hashem & Pick, Andreas, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
  25. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
  26. Agnieszka Markiewicz, 2012. "Model Uncertainty And Exchange Rate Volatility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 815-844, 08.
  27. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
  2. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
  3. Taylor, Nick, 2014. "The rise and fall of technical trading rule success," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 286-302.
  4. Boonsoo Koo & Myung Hwan Seo, 2013. "Structural-break models under mis-specification: implications for forecasting," Monash Econometrics and Business Statistics Working Papers 11/13, Monash University, Department of Econometrics and Business Statistics.
  5. Agnieszka Markiewicz & Andreas Pick, 2014. "Adaptive learning and survey data," DNB Working Papers 411, Netherlands Central Bank, Research Department.
  6. M. Hashem Pesaran & Ron P. Smith, 2012. "Counterfactual Analysis in Macroeconometrics: An Empirical Investigation into the Effects of Quantitative Easing," CESifo Working Paper Series 3879, CESifo Group Munich.
  7. Gunnar Bårdsen & Dag Kolsrud & Ragnar Nymoen, 2012. "Forecast robustness in macroeconometric models," Working Paper Series 13712, Department of Economics, Norwegian University of Science and Technology.
  8. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dnb:dnbwpp:327. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rob Vet).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.