Advanced Search
MyIDEAS: Login to save this paper or follow this series

A survey of sequential Monte Carlo methods for economics and finance

Contents:

Author Info

  • Creal, D.

    (Vrije Universiteit Amsterdam, Faculteit der Economische Wetenschappen en Econometrie (Free University Amsterdam, Faculty of Economics Sciences, Business Administration and Economitrics)

Abstract

This paper serves as an introduction and survey for economists to the field of sequential Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods are simulation based algorithms used to compute the high-dimensional and/or complex integrals that arise regularly in applied work. These methods are becoming increasingly popular in economics and finance; from dynamic stochastic general equilibrium models in macro-economics to option pricing. The objective of this paper is to explain the basics of the methodology, provide references to the literature, and cover some of the theoretical results that justify the methods in practice.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://zappa.ubvu.vu.nl/20090018.pdf
Our checks indicate that this address may not be valid because: 500 Failed to connect to FTP server zappa.ubvu.vu.nl: Net::FTP: Bad hostname 'zappa.ubvu.vu.nl'. If this is indeed the case, please notify (R. Dam)
Download Restriction: no

Bibliographic Info

Paper provided by VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics in its series Serie Research Memoranda with number 0018.

as in new window
Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:dgr:vuarem:2009-18

Contact details of provider:
Web page: http://www.feweb.vu.nl

Related research

Keywords: state space models; sequential Monte Carlo; particle filter; Markov chain Monte Carlo; Kalman filter;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  2. Olsson, Jimmy & Rydén, Tobias, 2008. "Asymptotic properties of particle filter-based maximum likelihood estimators for state space models," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 649-680, April.
  3. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
  4. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Economics Papers from University Paris Dauphine 123456789/6215, Paris Dauphine University.
  5. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2006. "Estimating Macroeconomic Models: A Likelihood Approach," Levine's Bibliography 122247000000000849, UCLA Department of Economics.
  6. Juan F. Rubio-Ramirez & Jesus Fernández-Villaverde, 2005. "Estimating dynamic equilibrium economies: linear versus nonlinear likelihood," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 891-910.
  7. Sungbae An & Frank Schorfheide, 2006. "Bayesian analysis of DSGE models," Working Papers 06-5, Federal Reserve Bank of Philadelphia.
  8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, EconWPA.
  9. Liang F., 2002. "Dynamically Weighted Importance Sampling in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 807-821, September.
  10. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
  11. Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Centre de Recherche en Economie et Statistique.
  12. Yuguo Chen & Junyi Xie & Jun S. Liu, 2005. "Stopping-time resampling for sequential Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 199-217.
  13. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3386-3404, August.
  14. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, 03.
  15. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
  16. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
  17. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.
  18. Johansen, Adam M. & Doucet, Arnaud, 2008. "A note on auxiliary particle filters," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1498-1504, September.
  19. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
  20. Nicholas G. Polson & Jonathan R. Stroud & Peter Müller, 2008. "Practical filtering with sequential parameter learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 413-428.
  21. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  22. Tanizaki, Hisashi & Mariano, Roberto S., 1998. "Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 263-290.
  23. Nicolas Chopin, 2007. "Inference and model choice for sequentially ordered hidden Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 269-284.
  24. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  25. Cappé, Olivier & Guillin, Arnaud & Marin, Jean-Michel & Robert, Christian P., 2004. "Population Monte Carlo," Economics Papers from University Paris Dauphine 123456789/6072, Paris Dauphine University.
  26. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836.
  27. Jasra, Ajay & Doucet, Arnaud & Stephens, David A. & Holmes, Christopher C., 2008. "Interacting sequential Monte Carlo samplers for trans-dimensional simulation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1765-1791, January.
  28. Arnaud Doucet & Vladislav Tadić, 2003. "Parameter estimation in general state-space models using particle methods," Annals of the Institute of Statistical Mathematics, Springer, vol. 55(2), pages 409-422, June.
  29. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Centre de Recherche en Economie et Statistique.
  30. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
  31. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
  32. Paul Fearnhead & Peter Clifford, 2003. "On-line inference for hidden Markov models via particle filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 887-899.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Rhys Bidder & Matthew E. Smith, 2013. "Doubts and variability: a robust perspective on exotic consumption series," Working Paper Series 2013-28, Federal Reserve Bank of San Francisco.
  2. Gust, Christopher & López-Salido, J David & Smith, Matthew E, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," CEPR Discussion Papers 9214, C.E.P.R. Discussion Papers.
  3. James M. Nason & Gregor W. Smith, 2014. "Measuring the Slowly Evolving Trend in US Inflation with Professional Forecasts," CAMA Working Papers 2014-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  4. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," CREATES Research Papers 2013-09, School of Economics and Management, University of Aarhus.
  5. Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 02 BAWP, University of Sydney Business School, Discipline of Business Analytics.
  6. Nima Nonejad, 2013. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," CREATES Research Papers 2013-27, School of Economics and Management, University of Aarhus.
  7. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
  8. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
  9. Neil Shephard, 2013. "Martingale unobserved component models," Economics Series Working Papers 644, University of Oxford, Department of Economics.
  10. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
  11. Neil Shephard & Arnaud Doucet, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Series Working Papers 606, University of Oxford, Department of Economics.
  12. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
  13. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
  14. James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:vuarem:2009-18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (R. Dam).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.