Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation

Contents:

Author Info

  • Lennart Hoogerheide

    (VU University Amsterdam)

  • Anne Opschoor

    (Erasmus University Rotterdam)

  • Herman K. van Dijk

    (Erasmus University Rotterdam, and VU University Amsterdam)

Abstract

A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture of Student- t densities that approximates accurately the target distribution - typically a posterior distribution, of which we only require a kernel - in the sense that the Kullback-Leibler divergence between target and mixture is minimized. We label this approach Mixture of t by Importance Sampling and Expectation Maximization (MitISEM). The constructed mixture is used as a candidate density for quick and reliable application of either Importance Sampling (IS) or the Metropolis-Hastings (MH) method. We also introduce three extensions of the basic MitISEM approach. First, we propose a method for applying MitISEM in a sequential manner. Second, we introduce a permutation-augmented MitISEM approach. Third, we propose a partial MitISEM approach, which aims at approximating the joint distribution by estimating a product of marginal and conditional distributions. This division can substantially reduce the dimension of the approximation problem, which facilitates the application of adaptive importance sampling for posterior simulation in more complex models with larger numbers of parameters. Our results indicate that the proposed methods can substantially reduce the computational burden in econometric models like DCC or mixture GARCH models and a mixture instrumental variables model.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://papers.tinbergen.nl/12026.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Tinbergen Institute in its series Tinbergen Institute Discussion Papers with number 12-026/4.

as in new window
Length:
Date of creation: 23 Mar 2012
Date of revision:
Handle: RePEc:dgr:uvatin:20120026

Contact details of provider:
Web page: http://www.tinbergen.nl

Related research

Keywords: mixture of Student-t distributions; importance sampling; Kullback-Leibler divergence; Expectation Maximization; Metropolis-Hastings algorithm; predictive likelihood; DCC GARCH; mixture GARCH; instrumental variables;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
  2. Fruhwirth-Schnatter S., 2001. "Markov Chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 194-209, March.
  3. Hoogerheide, L.F. & van Dijk, H.K. & van Oest, R.D., 2007. "Simulation based bayesian econometric inference: principles and some recent computational advances," Econometric Institute Research Papers EI 2007-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  5. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
  6. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C23-C46.
  7. Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
  8. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
  9. Eklund, Jana & Karlsson, Sune, 2005. "Forecast Combination and Model Averaging using Predictive Measures," Working Paper Series 191, Sveriges Riksbank (Central Bank of Sweden).
  10. Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Centre de Recherche en Economie et Statistique.
  11. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
  12. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  13. van Dijk, H. K. & Kloek, T., 1980. "Further experience in Bayesian analysis using Monte Carlo integration," Journal of Econometrics, Elsevier, vol. 14(3), pages 307-328, December.
  14. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
  15. Angrist, Joshua D & Krueger, Alan B, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, MIT Press, vol. 106(4), pages 979-1014, November.
  16. repec:dgr:uvatin:2011004 is not listed on IDEAS
  17. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nalan Basturk & Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2012. "The R Package MitISEM: Mixture of Student-t Distributions using Importance Sampling Weighted Expectation Maximization for Efficient and Robust Simulation," Tinbergen Institute Discussion Papers 12-096/III, Tinbergen Institute.
  2. Nalan Basturk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute.
  3. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
  4. repec:dgr:uvatin:2013047 is not listed on IDEAS

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:uvatin:20120026. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antoine Maartens (+31 626 - 160 892)).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.