Advanced Search
MyIDEAS: Login

Optimal Fourier Inversion in Semi-analytical Option Pricing

Contents:

Author Info

  • Roger Lord

    ()
    (Erasmus Universiteit Rotterdam, and Rabobank International)

  • Christian Kahl

    ()
    (University of Wuppertal, and ABN AMRO, London)

Abstract

At the time of writing this article, Fourier inversion is the computational method of choice for a fast and accurate calculation of plain vanilla option prices in models with an analytically available characteristic function. Shifting the contour of integration along the complex plane allows for different representations of the inverse Fourier integral. In this article, we present the optimal contour of the Fourier integral, taking into account numerical issues such as cancellation and explosion of the characteristic function. This allows for robust and fast option pricing for almost all levels of strikes and maturities.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://papers.tinbergen.nl/06066.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Tinbergen Institute in its series Tinbergen Institute Discussion Papers with number 06-066/2.

as in new window
Length:
Date of creation: 27 Jul 2006
Date of revision: 05 Jun 2007
Handle: RePEc:dgr:uvatin:20060066

Contact details of provider:
Web page: http://www.tinbergen.nl

Related research

Keywords: option pricing; Fourier inversion; Carr-Madan; Heston; stochastic volatility; characteristic function; damping; saddlepoint approximations;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kilin, Fiodar, 2006. "Accelerating the calibration of stochastic volatility models," MPRA Paper 2975, University Library of Munich, Germany, revised 22 Apr 2007.
  2. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
  3. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
  4. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:uvatin:20060066. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antoine Maartens (+31 626 - 160 892)).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.