Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests

Contents:

Author Info

  • H. Peter Boswijk

    ()
    (University of Amsterdam)

  • Andre Lucas

    ()
    (Vrije Universiteit Amsterdam)

  • Nick Taylor

    (University of Manchester)

Abstract

This paper provides an extensive Monte-Carlo comparison of severalcontemporary cointegration tests. Apart from the familiar Gaussian basedtests of Johansen, we also consider tests based on non-Gaussianquasi-likelihoods. Moreover, we compare the performance of these parametrictests with tests that estimate the score function from the data using eitherkernel estimation or semi-nonparametric density approximations. Thecomparison is completed with a fully nonparametric cointegration test. Insmall samples, the overall performance of the semi-nonparametric approachappears best in terms of size and power. The main cost of thesemi-nonparametric approach is the increased computation time. In largesamples and for heavily skewed or multimodal distributions, the kernel basedadaptive method dominates. For near-Gaussian distributions, however, thesemi-nonparametric approach is preferable again.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://papers.tinbergen.nl/99012.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Tinbergen Institute in its series Tinbergen Institute Discussion Papers with number 99-012/4.

as in new window
Length:
Date of creation: 18 Feb 1999
Date of revision:
Handle: RePEc:dgr:uvatin:19990012

Contact details of provider:
Web page: http://www.tinbergen.nl

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
  2. Bierens, H.J., 1995. "Nonparametric cointegration analysis," Discussion Paper 1995-123, Tilburg University, Center for Economic Research.
  3. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  4. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  5. Franses, Philip Hans & Kloek, Teun & Lucas, Andre, 1998. "Outlier robust analysis of long-run marketing effects for weekly scanning data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 293-315, November.
  6. Kleibergen, Frank & van Dijk, Herman K., 1994. "Direct cointegration testing in error correction models," Journal of Econometrics, Elsevier, vol. 63(1), pages 61-103, July.
  7. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-43, September.
  8. Lucas, André, 1997. "Cointegration Testing Using Pseudolikelihood Ratio Tests," Econometric Theory, Cambridge University Press, vol. 13(02), pages 149-169, April.
  9. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
  10. Andre Lucas, 1998. "Inference on cointegrating ranks using lr and lm tests based on pseudo-likelihoods," Econometric Reviews, Taylor & Francis Journals, vol. 17(2), pages 185-214.
  11. H. Peter Boswijk & Jurgen A. Doornik, 1999. "Distribution Approximations for Cointegration Tests with Stationary Exogenous Regressors," Tinbergen Institute Discussion Papers 99-013/4, Tinbergen Institute.
  12. Hodgson, D.J., 1995. "Adaptive Estimation of Error Correlation Models," RCER Working Papers 410, University of Rochester - Center for Economic Research (RCER).
  13. Franses, Philip Hans & Lucas, Andre, 1998. "Outlier Detection in Cointegration Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 459-68, October.
  14. Doornik, Jurgen A, 1998. " Approximations to the Asymptotic Distributions of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-93, December.
  15. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  16. Boswijk, H. Peter & Lucas, Andr‚, 1997. "Semi-nonparametric cointegration testing," Serie Research Memoranda 0041, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Martin Wagner, 2002. "A Comparison of Johansen's, Bierens and the Subspace Algorithm Method for Cointegration Analysis," Diskussionsschriften dp0210, Universitaet Bern, Departement Volkswirtschaft.
  2. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
  3. Aktham Maghyereh, 2006. "The long-run relationship between stock returns and inflation in developing countries: further evidence from a nonparametric cointegration test," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(4), pages 265-273, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:uvatin:19990012. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Antoine Maartens (+31 626 - 160 892)).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.