Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games

Contents:

Author Info

  • Norde, H.W.

    (Tilburg University, Center for Economic Research)

Abstract

Abstract: In this paper two cost sharing solutions for minimum cost spanning tree problems are introduced, the degree adjusted folk solution and the cost adjusted folk solution. These solutions overcome the problem of the classical reductionist folk solution as they have considerable strict ranking power, without breaking established axioms. As such they provide affirmative answers to open questions, put forward in Bogomolnaia and Moulin (2010) and Bogomolnaia et al. (2010).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arno.uvt.nl/show.cgi?fid=130597
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
Download Restriction: no

Bibliographic Info

Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 2013-039.

as in new window
Length:
Date of creation: 2013
Date of revision:
Handle: RePEc:dgr:kubcen:2013039

Contact details of provider:
Web page: http://center.uvt.nl

Related research

Keywords: cost sharing; minimum cost spanning tree games; networks;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
  2. Norde, H.W. & Moretti, S. & Tijs, S.H., 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," Open Access publications from Tilburg University urn:nbn:nl:ui:12-123753, Tilburg University.
  3. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "The folk solution and Boruvka's algorithm in minimum cost spanning tree problems," MPRA Paper 17839, University Library of Munich, Germany.
  4. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
  5. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
  6. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
  7. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
  8. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
  9. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "Minimum cost spanning extension problems: The proportional rule and the decentralized rule," Discussion Paper 1994-96, Tilburg University, Center for Economic Research.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:2013039. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.