Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Communication Tree Value for TU-games with Graph Communication


Author Info

  • Huseynov, T.
  • Talman, A.J.J.

    (Tilburg University, Center for Economic Research)

Registered author(s):


    Abstract: A new solution is presented for transferable utility games with graph communication where the cooperation possibilities are represented by a graph. Players are only able to cooperate and obtain some worth in a coalition if they form a connected set in the given graph. To determine the payoff for each player, a single-valued solution, the communication tree value, is proposed for this class of games. The idea is that to form the grand coalition of all players a player can join a set of players only if this player is connected in the graph to at least one of the players in the set. To a set of players, starting with an arbitrary single player, from each maximally connected subset of remaining players one player joins who is connected to one or more of the players in that set. In this way a (rooted) tree on the set of players is obtained, called a communication tree. For a given game each communication tree of the graph induces a marginal contribution vector, in which any player receives a payoff equal to what he contributes in worth when he joins his subordinates in the tree. The average payoff over all communication trees of the graph determines the value. In case the underlying graph is cycle-complete the value coincides with the average tree solution. When there is complete communication between all players, which is the special case of cycle-completeness, players join one by one, yielding the Shapley value. A weak form of convexity is introduced, under which the value is guaranteed to be an element of the core. For games with complete graph communication the condition coincides with convexity and in case the underlying graph is cycle-free it is weaker than super-additivity.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
    Download Restriction: no

    Bibliographic Info

    Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 2012-095.

    as in new window
    Date of creation: 2012
    Date of revision:
    Handle: RePEc:dgr:kubcen:2012095

    Contact details of provider:
    Web page:

    Related research

    Keywords: Cooperative game; communication structure; Myerson value; core stability; convexity; rooted tree;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Herings, P.J.J. & Laan, G. van der & Talman, A.J.J. & Yang, Z.F., 2008. "The Average Tree Solution for Cooperative Games with Communication Structure," Discussion Paper 2008-73, Tilburg University, Center for Economic Research.
    2. Herings, P.J.J. & Laan, G. van der & Talman, A.J.J., 2008. "The average tree solution for cycle-free graph games," Open Access publications from Tilburg University urn:nbn:nl:ui:12-377604, Tilburg University.
    3. Marco Slikker, 2005. "A characterization of the position value," International Journal of Game Theory, Springer, vol. 33(4), pages 505-514, November.
    4. Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)," Discussion Paper 2011-119, Tilburg University, Center for Economic Research.
    5. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2009. "Average tree solutions and the distribution of Harsanyi dividends," MPRA Paper 17909, University Library of Munich, Germany.
    6. Gabrielle Demange, 2004. "On group stability in hierarchies and networks," Post-Print halshs-00581662, HAL.
    7. Borm, P.E.M. & Owen, G. & Tijs, S.H., 1992. "On the position value for communication situations," Open Access publications from Tilburg University urn:nbn:nl:ui:12-154855, Tilburg University.
    Full references (including those not matched with items on IDEAS)



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:2012095. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.