Advanced Search
MyIDEAS: Login

Simulation Optimization via Bootstrapped Kriging: Tutorial (Replaced by CentER DP 2013-064)

Contents:

Author Info

  • Kleijnen, Jack P.C.

    (Tilburg University, Center for Economic Research)

Abstract

Kriging (or Gaussian Process) metamodels may be analyzed through bootstrapping, which is a versatile statistical method but must be adapted to the speci c problem being analyzed. More precisely, a random or discrete-event simulation may be run several times for the same scenario (combination of simulation inputs); the resulting replicated responses may be resampled with replacement, which is called "distribution-free bootstrapping". In engineering, however, deterministic simulation is often applied; such a simulation is run only once for the same scenario, so "parametric bootstrapping" is used. This bootstrapping assumes a multivariate Gaussian distribution, which is sampled after its parameters are estimated from the simulation's input/output data. More specifically, this tutorial covers the following recent approaches: (1) E¢ cient Global Optimization (EGO) via Expected Improvement (EI) using parametric bootstrapping to obtain an estimator of the Kriging predictor's variance accounting for the randomness resulting from estimating the Kriging parameters. (2) Constrained optimization via Mathematical Programming applied to Kriging metamodels using distribution-free bootstrapping to validate these metamodels. (3) Robust optimization accounting for an environment that is not exactly known (so it is uncertain); this optimization may use Mathematical Programming and Kriging with distribution-free bootstrapping to estimate the Pareto frontier. (4) Assuming a characteristic like monotonicity for the outputs as a function of the inputs, bootstrapped Kriging may preserve this characteristic.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 2011-064.

as in new window
Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:dgr:kubcen:2011064

Contact details of provider:
Web page: http://center.uvt.nl

Related research

Keywords: simulation; optimization; experimental design; stochastic processes; engineering;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:2011064. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.