Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves


Author Info

  • Siem, A.Y.D.
  • Hertog, D. den
  • Hoffmann, A.L.

    (Tilburg University, Center for Economic Research)

Registered author(s):


    In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of univariate convex functions have been proposed.We study the effect of the use of increasing convex or increasing concave transformations on the approximation of univariate (convex) functions.In this paper, we show that these transformations can be used to construct upper and lower bounds for nonconvex functions.Moreover, we show that by using such transformations of the input variable or the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without these approximations.We show that these transformations can be applied to the approximation of a (convex) Pareto curve that is associated with a (convex) bi-objective optimization problem.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
    Download Restriction: no

    Bibliographic Info

    Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 2006-66.

    as in new window
    Date of creation: 2006
    Date of revision:
    Handle: RePEc:dgr:kubcen:200666

    Contact details of provider:
    Web page:

    Related research

    Keywords: approximation theory; convexity; convex/concave transformation; Pareto curve;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:


    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:200666. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.