Advanced Search
MyIDEAS: Login to save this paper or follow this series

The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations

Contents:

Author Info

  • Brânzei, R.
  • Moretti, S.
  • Norde, H.W.
  • Tijs, S.H.

    (Tilburg University, Center for Economic Research)

Abstract

The aim of this paper is to introduce and axiomatically characterize the P-value as a rule to solve the cost sharing problem in minimum cost spanning tree (mcst) situations.The P-value is related to the Kruskal algorithm for finding an mcst.Moreover, the P-value leads to a core allocation of the corresponding mcst game, and when applied also to the mcst subsituations it delivers a population monotonic allocation scheme.A conewise positive linearity property is one of the basic ingredients of an axiomatic characterization of the P-value.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arno.uvt.nl/show.cgi?fid=10486
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
Download Restriction: no

Bibliographic Info

Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 2003-129.

as in new window
Length:
Date of creation: 2003
Date of revision:
Handle: RePEc:dgr:kubcen:2003129

Contact details of provider:
Web page: http://center.uvt.nl

Related research

Keywords: costs; games; allocation; population;

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jens Leth Hougaard & Hervé Moulin & Lars Peter Østerdal, 2008. "Decentralized Pricing in Minimum Cost Spanning Trees," Discussion Papers 08-24, University of Copenhagen. Department of Economics.
  2. Bhaskar Dutta & Debasis Mishra, 2008. "Minimum cost arborescences," Indian Statistical Institute, Planning Unit, New Delhi Discussion Papers 08-12, Indian Statistical Institute, New Delhi, India.
  3. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer, vol. 42(4), pages 941-957, April.
  4. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
  5. Moretti, Stefano, 2009. "Game Theory applied to gene expression analysis," Economics Papers from University Paris Dauphine 123456789/4922, Paris Dauphine University.
  6. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
  7. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
  8. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Merge-proofness in minimum cost spanning tree problems," International Journal of Game Theory, Springer, vol. 40(2), pages 309-329, May.
  9. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
  10. Stefano Moretti & Stef Tijs & Rodica Branzei & Henk Norde, 2009. "Cost allocation protocols for supply contract design in network situations," Computational Statistics, Springer, vol. 69(1), pages 181-202, March.
  11. Gustavo Bergantiños & Anirban Kar, 2008. "Obligation Rules," Working papers 167, Centre for Development Economics, Delhi School of Economics.
  12. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
  13. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
  14. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
  15. Bergantiños, Gustavo & Vidal-Puga, Juan, 2012. "Characterization of monotonic rules in minimum cost spanning tree problems," MPRA Paper 39994, University Library of Munich, Germany.
  16. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Discussion Paper 2008-64, Tilburg University, Center for Economic Research.
  17. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
  18. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:2003129. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.