Advanced Search
MyIDEAS: Login to save this paper or follow this series

Statistical Algorithms for Models in State Space Using SsfPack 2.2

Contents:

Author Info

  • Koopman, S.J.M.
  • Shephard, N.
  • Doornik, J.A.

    (Tilburg University, Center for Economic Research)

Abstract

This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing environment. SsfPack allows for a full range of different state space forms: from a simple time-invariant model to a complicated time-varying model. Functions can be used which put standard models such as ARIMA and cubic spline models in state space form. Basic functions are available for filtering, moment smoothing and simulation smoothing. Ready-to-use functions are provided for standard tasks such as likelihood evaluation, forecasting and signal extraction. We show that SsfPack can be easily used for implementing, fitting and analysing Gaussian models relevant to many areas of econometrics and statistics. Some Gaussian illustrations are given.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arno.uvt.nl/show.cgi?fid=3825
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
Download Restriction: no

Bibliographic Info

Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 1998-141.

as in new window
Length:
Date of creation: 1998
Date of revision:
Handle: RePEc:dgr:kubcen:1998141

Contact details of provider:
Web page: http://center.uvt.nl

Related research

Keywords: Kalman filtering and smoothing; Markov chain Monte Carlo; Ox; simulation smoother; state space;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
  2. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  3. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-89, October.
  4. Fabio Busetti & Andrew Harvey, 2007. "Testing for trend," Temi di discussione (Economic working papers) 614, Bank of Italy, Economic Research and International Relations Area.
  5. Bergstrom, Albert Rex, 1983. "Gaussian Estimation of Structural Parameters in Higher Order Continuous Time Dynamic Models," Econometrica, Econometric Society, vol. 51(1), pages 117-52, January.
  6. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
  7. Siem Jan Koopman & N.G. Shephard, 1992. "Exact Score for Time Series Models in State Space Form (Now published in Biometrika (1992), 79, 4, pp.283-6.)," STICERD - Econometrics Paper Series /1992/241, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  8. Tanaka, Katsuto, 1983. "Non-Normality of the Lagrange Multiplier Statistic for Testing the Constancy of Regression Coefficients," Econometrica, Econometric Society, vol. 51(5), pages 1577-82, September.
  9. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:1998141. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.