Advanced Search
MyIDEAS: Login

Multivariate Student -t Regression Models: Pitfalls and Inference

Contents:

Author Info

  • Fernández, C.
  • Steel, M.F.J.

    (Tilburg University, Center for Economic Research)

Abstract

We consider likelihood-based inference from multivariate regression models with independent Student-t errors. Some very intruiging pitfalls of both Bayesian and classical methods on the basis of point observations are uncovered. Bayesian inference may be precluded as a consequence of the coarse nature of the data. Global maximization of the likelihood function is a vacuous exercise since the likelihood function is unbounded as we tend to the boundary of the parameter space. A Bayesian analysis on the basis of set observations is proposed and illustrated by several examples.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arno.uvt.nl/show.cgi?fid=3533
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Richard Broekman)
Download Restriction: no

Bibliographic Info

Paper provided by Tilburg University, Center for Economic Research in its series Discussion Paper with number 1997-08.

as in new window
Length:
Date of creation: 1997
Date of revision:
Handle: RePEc:dgr:kubcen:199708

Contact details of provider:
Web page: http://center.uvt.nl

Related research

Keywords: Bayesian inference; Coarse data; Continuous distribution; Maximum likelihood; Missing data; Scale mixture of Normals;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. More on Student-t Regression Models
    by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2013-12-22 18:04:00
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Manuel Galea & Heleno Bolfarine & Filidor Vilcalabra, 2002. "Influence diagnostics for the structural errors-in-variables model under the Student-t distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(8), pages 1191-1204.
  2. James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, EconWPA, revised 04 Apr 2003.
  3. Antonio Sanhueza & Víctor Leiva & N. Balakrishnan, 2008. "A new class of inverse Gaussian type distributions," Metrika, Springer, vol. 68(1), pages 31-49, June.
  4. David Cademartori & Cecilia Romo & Ricardo Campos & Manuel Galea, 2003. "Robust estimation of systematic risk using the t distribution in the chilean stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 10(7), pages 447-453.
  5. Felipe Osorio & Manuel Galea, 2006. "Detection of a change-point in student-t linear regression models," Statistical Papers, Springer, vol. 47(1), pages 31-48, January.
  6. Filidor Labra & Reiko Aoki & Heleno Bolfarine, 2005. "Local influence in null intercept measurement error regression under a student_t model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 723-740.
  7. Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "Bayesian Multivariate Regression Analysis with a New Class of Skewed Distributions," Econometrics 0403001, EconWPA.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:dgr:kubcen:199708. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.