Advanced Search
MyIDEAS: Login to save this paper or follow this series

To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends

Contents:

Author Info

Abstract

In two recent articles, Sims (1988) and Sims and Uhlig (1988) question the value of much of the ongoing literature on unit roots and stochastic trends. They characterize the seeds of this literature as "sterile ideas," the application of nonstationary limit theory as "wrongheaded and unenlightening" and the use of classical methods of inference as "unreasonable" and "logically unsound." They advocate in place of classical methods an explicit Bayesian approach to inference that utilizes a flat prior on the autoregressive coefficient. DeJong and Whiteman adopt a related Bayesian approach in a group of papers (1989a,b,c) that seek to reevaluate the empirical evidence from historical economic time series. Their results appear to be conclusive in turning around the earlier, influential conclusions of Nelson and Plosser (1982) that most aggregate economic time series have stochastic trends. So far, these criticisms of unit root econometrics have gone unanswered; the assertions about the impropriety of classical methods and the superiority of flat prior Bayesian methods have been unchallenged; and the empirical reevaluation of evidence in support of stochastic trends has been left without comment. This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions and the conclusions of these articles on the Bayesian analysis of unit roots. Our approach is also Bayesian but we employ objective ignorance priors not flat priors in our analysis. Ignorance priors represent a state of ignorance about the value of a parameter and in many models are very different from flat priors. We demonstrate that in time series models flat priors do not represent ignorance but are actually informative (sic) precisely because they neglect generically available information about how autoregressive coefficients influence observed time series characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences toward stationary and iid alternatives where they do represent ignorance, as in the linear regression model. This bias helps to explain the outcome of the simulation experiments in Sims and Uhlig and the empirical results of DeJong and Whiteman. Under flat priors and ignorance priors this paper derives posterior distributions for the parameters in autoregressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior distributions are obtained by using the Laplace approximation for multivariate integrals along the lines suggested by the author (1983) in some earlier work. The bias from the use of flat priors is shown in our simulations to be substantial; and we conclude that it is unacceptably large in models with a fitted deterministic trend, for which the expected posterior probability of a stochastic trend is found to be negligible even though the true data generating mechanism has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the results of classical methods. An interesting outcome of our simulations and our empirical work is the bimodal Bayesian posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like classical confidence intervals that are based on asymptotic theory. The paper concludes with an empirical application of our Bayesian methodology to the Nelson- Plosser series. Seven of the fourteen series show evidence of stochastic trends under ignorance priors, whereas under flat priors on the coefficients all but three of the series appear trend stationary. The latter result corresponds closely with the conclusion reached by DeJong and Whiteman (1989b) (based on truncated flat priors) that all but two of the Nelson-Plosser series are trend stationary. We argue that the DeJong-Whiteman inferences are biased toward trend stationarity through the use of flat priors and that their inferences are fragile (i.e., not robust) not only to the prior but also to the lag length chosen in the time series specification.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d09b/d0950.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 950.

as in new window
Length: 44 pages
Date of creation: Jul 1990
Date of revision:
Publication status: Published in Journal of Applied Econometrics (1991), 6: 333-364
Handle: RePEc:cwl:cwldpp:950

Note: CFP 798.
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Bayesian analysis; bimodal posterior density; disjoint confidence set; flat prior; fragile inference; hypergeometric function; ignorance prior; Laplace approximation; asymmetric posterior density;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Peter C.B. Phillips & Joon Y. Park, 1986. "Statistical Inference in Regressions with Integrated Processes: Part 2," Cowles Foundation Discussion Papers 819R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1987.
  2. Edward E. Leamer, 1982. "Let's Take the Con Out of Econometrics," UCLA Economics Working Papers 239, UCLA Department of Economics.
  3. Peter C.B. Phillips, 1987. "Partially Identified Econometric Models," Cowles Foundation Discussion Papers 845R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1988.
  4. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, Econometric Society, vol. 49(4), pages 1057-72, June.
  5. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
  6. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  7. Christopher A. Sims, 1982. "Policy Analysis with Econometric Models," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 13(1), pages 107-164.
  8. Peter C.B. Phillips & Peter Schmidt, 1989. "Testing for a Unit Root in the Presence of Deterministic Trends," Cowles Foundation Discussion Papers 933, Cowles Foundation for Research in Economics, Yale University.
  9. Peter C.B. Phillips, 1981. "Marginal Densities of Instrumental Variable Estimators in the General Single Equation Case," Cowles Foundation Discussion Papers 609, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:950. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.