Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Durbin-Watson Ratio Under Infinite Variance Errors

Contents:

Author Info

Abstract

This paper studies the properties of the von Neumann ratio for time series with infinite variance. The asymptotic theory is developed using recent results on the weak convergence of partial sums of time series with infinite variance to stable processes and of sample serial correlations to functions of stable variables. Our asymptotics cover the null of iid variates and general moving average (MA) alternatives. Regression residuals are also considered. In the static regression model the Durbin-Watson statistic has the same limit distribution as the von Neumann ratio under general conditions. However, the dynamic models, the results are more complex and more interesting. When the regressors have thicker tail probabilities than the errors we find that the Durbin-Watson and von Neumann ration asymptotics are the same.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d08b/d0898-r.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 898R.

as in new window
Length: 41 pages
Date of creation: 1989
Date of revision: Aug 1989
Publication status: Published in Journal of Econometrics (1991), 47: 85-114
Handle: RePEc:cwl:cwldpp:898r

Note: CFP 772.
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Durbin-Watson ratio; von Neumann ratio; serial correlation; dynamic models; time series; asymptotic theory;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Davis, Richard & Resnick, Sidney, 1985. "More limit theory for the sample correlation function of moving averages," Stochastic Processes and their Applications, Elsevier, vol. 20(2), pages 257-279, September.
  2. Peter C.B. Phillips & Vassilis A. Hajivassiliou, 1987. "Bimodal t-Ratios," Cowles Foundation Discussion Papers 842, Cowles Foundation for Research in Economics, Yale University.
  3. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  4. Bartels, Robert & Goodhew, John, 1981. "The Robustness of the Durbin-Watson Test," The Review of Economics and Statistics, MIT Press, vol. 63(1), pages 136-39, February.
  5. Kariya, Takeaki, 1988. "The Class of Models for which the Durbin-Watson Test is Locally Optimal," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 167-75, February.
  6. King, Maxwell L. & Evans, Merran A., 1988. "Locally Optimal Properties of the Durbin-Watson Test," Econometric Theory, Cambridge University Press, vol. 4(03), pages 509-516, December.
  7. Donald W.K. Andrews, 1986. "On the Performance of Least Squares in Linear Regression with Undefined Error Means," Cowles Foundation Discussion Papers 798, Cowles Foundation for Research in Economics, Yale University.
  8. King, Maxwell L. & Wu, Ping X., 1991. "Small-disturbance asymptotics and the Durbin-Watson and related tests in the dynamic regression model," Journal of Econometrics, Elsevier, vol. 47(1), pages 145-152, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jonathan B. Hill, 2005. "Gaussian Tests of "Extremal White Noise" for Dependent, Heterogeneous, Heavy Tailed Strochastic Processes with an Application," Working Papers 0513, Florida International University, Department of Economics.
  2. Kurz-Kim, Jeong-Ryeol & Loretan, Mico, 2014. "On the properties of the coefficient of determination in regression models with infinite variance variables," Journal of Econometrics, Elsevier, vol. 181(1), pages 15-24.
  3. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
  4. Jonathan B. Hill, 2005. "On Tail Index Estimation Using Dependent,Heterogenous Data," Working Papers 0512, Florida International University, Department of Economics.
  5. Huston McCulloch, J. & Panton, Don B., 1997. "Precise tabulation of the maximally-skewed stable distributions and densities," Computational Statistics & Data Analysis, Elsevier, vol. 23(3), pages 307-320, January.
  6. Mikael Linden, 1992. "Stochastic and deterministic trends in Finnish macroeconomic time series," Finnish Economic Papers, Finnish Economic Association, vol. 5(2), pages 110-116, Autumn.
  7. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:898r. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.