Advanced Search
MyIDEAS: Login

Statistical Inference in Instrumental Variables

Contents:

Author Info

Abstract

This paper studies the asymptotic properties of instrumental variable (IV) estimates of multivariate cointegrating regressions. The framework of study is based on earlier work by Phillips and Durlauf (1986) and Park and Phillips (1988, 1989). In particular, the results in these papers are extended to allow for IV regressions that accommodate deterministic and stochastic regressors as well as quite general deterministic processes in the data generating mechanism. It is found that IV regressions are consistent even when the instruments are stochastically independent of the regressors. This phenomenon, which contrasts with traditional theory for stationary time series, is a beneficial artifact of spurious regression theory whereby stochastic trends in the instruments ensure their relevance asymptotically. Problems of inference are also addressed and some promising new theoretical results are reported. These involve a class of Wald tests which are modified by semiparametric corrections for serial correlation and for endogeneity. The resulting test statistics which we term fully modified Wald tests have limiting chi-squared distributions, thereby removing the obstacles to inference in cointegrated systems that were presented by the nuisance parameter dependencies in earlier work. Interestingly, IV methods themselves are insufficient to achieve this end and an endogeneity correction is still generally required, again in contrast to traditional theory. Our results therefore provide strong support for the conclusion reached by Hendry (1986) that there is no free lunch in estimating cointegrated systems. Some simulation results are reported which seek to explore the sampling behavior of our suggested procedures. These simulations compare our fully modified (semiparametric) methods with the parametric error correction methodology that has been extensively used in recent empirical research and with conventional least squares regression. Both the fully modified and error correction methods work well in finite samples and the sampling performance of each procedure confirms the relevance of asymptotic distribution theory, as distinct from superconsistency results, in discriminating between different statistical methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d08b/d0869-r.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 869R.

as in new window
Length: 58 pages
Date of creation: 1988
Date of revision: Apr 1989
Publication status: Published in Review of Economic Studies (1990), 57: 99-125
Handle: RePEc:cwl:cwldpp:869r

Note: CFP 743.
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:869r. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.