Advanced Search
MyIDEAS: Login to save this paper or follow this series

Exactly Distribution-free Inference in Instrumental Variables Regression with Possibly Weak Instruments

Contents:

Author Info

Abstract

This paper introduces a rank-based test for the instrumental variables regression model that dominates the Anderson-Rubin test in terms of finite sample size and asymptotic power in certain circumstances. The test has correct size for any distribution of the errors with weak or strong instruments. The test has noticeably higher power than the Anderson-Rubin test when the error distribution has thick tails and comparable power otherwise. Like the Anderson-Rubin test, the rank tests considered here perform best, relative to other available tests, in exactly-identified models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d15a/d1501.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1501.

as in new window
Length: 29 pages
Date of creation: Mar 2005
Date of revision:
Publication status: Published in Journal of Econometrics (2008), 42(1): 183-200
Handle: RePEc:cwl:cwldpp:1501

Note: CFP 1253.
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Aligned ranks; Anderson-Rubin statistic; categorical covariates; exact size; normal scores; rank test; weak instruments; Wilcoxon scores;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
  2. Greevy, Robert & Silber, Jeffrey H. & Cnaan, Avital & Rosenbaum, Paul R., 2004. "Randomization Inference With Imperfect Compliance in the ACE-Inhibitor After Anthracycline Randomized Trial," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 7-15, January.
  3. Joshua D. Angrist & William N. Evans, 1996. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," NBER Working Papers 5778, National Bureau of Economic Research, Inc.
  4. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  5. Donald W.K. Andrews & Vadim Marmer, 2005. "Exactly Distribution-free Inference in Instrumental Variables Regression with Possibly Weak Instruments," Cowles Foundation Discussion Papers 1501, Cowles Foundation for Research in Economics, Yale University.
  6. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  7. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
  8. Joshua Angrist & Eric Bettinger & Erik Bloom & Elizabeth King & Michael Kremer, 2002. "Vouchers for Private Schooling in Colombia: Evidence from a Randomized Natural Experiment," American Economic Review, American Economic Association, vol. 92(5), pages 1535-1558, December.
  9. Joshua Angrist & Alan Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," Working Papers 653, Princeton University, Department of Economics, Industrial Relations Section..
  10. Esther Duflo, 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment," American Economic Review, American Economic Association, vol. 91(4), pages 795-813, September.
  11. Donald W.K. Andrews & Marcelo Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," NBER Technical Working Papers 0299, National Bureau of Economic Research, Inc.
  12. Esther Duflo & Emmanuel Saez, 2003. "The Role Of Information And Social Interactions In Retirement Plan Decisions: Evidence From A Randomized Experiment," The Quarterly Journal of Economics, MIT Press, vol. 118(3), pages 815-842, August.
  13. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  14. Steven D. Levitt, 1995. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Policeon Crime," NBER Working Papers 4991, National Bureau of Economic Research, Inc.
  15. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  16. Donald W.K. Andrews & Gustavo Soares, 2006. "Rank Tests for Instrumental Variables Regression with Weak Instruments," Cowles Foundation Discussion Papers 1564, Cowles Foundation for Research in Economics, Yale University.
  17. DUFOUR, Jean-Marie, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," Cahiers de recherche 10-2003, Centre interuniversitaire de recherche en ├ęconomie quantitative, CIREQ.
  18. Guido W. Imbens & Paul R. Rosenbaum, 2005. "Robust, accurate confidence intervals with a weak instrument: quarter of birth and education," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(1), pages 109-126.
  19. McCabe, B. P. M., 1989. "Misspecification tests in econometrics based on ranks," Journal of Econometrics, Elsevier, vol. 40(2), pages 261-278, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
  2. Nicholas Bloom & Benn Eifert & Aprajit Mahajan & David McKenzie & John Roberts, 2011. "Does Management Matter? Evidence from India," NBER Working Papers 16658, National Bureau of Economic Research, Inc.
  3. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
  4. Donald W.K. Andrews & Vadim Marmer, 2005. "Exactly Distribution-free Inference in Instrumental Variables Regression with Possibly Weak Instruments," Cowles Foundation Discussion Papers 1501, Cowles Foundation for Research in Economics, Yale University.
  5. Aviv Nevo & Adam M. Rosen, 2008. "Identification with Imperfect Instruments," NBER Working Papers 14434, National Bureau of Economic Research, Inc.
  6. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
  7. Leandro M. Magnusson & Sophocles Mavroeidis, 2011. "Identification Using Stability Restrictions," Working Papers 1116, Tulane University, Department of Economics.
  8. Kazuhiko Hayakawa, 2006. "Efficient GMM Estimation of Dynamic Panel Data Models Where Large Heterogeneity May Be Present," Hi-Stat Discussion Paper Series d05-130, Institute of Economic Research, Hitotsubashi University.
  9. Elise Coudin & Jean-Marie Dufour, 2010. "Finite and Large Sample Distribution-Free Inference in Median Regressions with Instrumental Variables," Working Papers 2010-56, Centre de Recherche en Economie et Statistique.
  10. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1501. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.