Advanced Search
MyIDEAS: Login to save this paper or follow this series

A p-median problem with distance selection

Contents:

Author Info

  • Stefano Benati

    ()

  • Sergio García

    ()

Registered author(s):

    Abstract

    This paper introduces an extension of the p-median problem and its application to clustering, in which the distance/dissimilarity function between units is calculated as the distance sum on the q most important variables. These variables are to be chosen from a set of m elements, so a new combinatorial feature has been added to the problem, that we call the p-median model with distance selection. This problem has its origin in cluster analysis, often applied to sociological surveys, where it is common practice for a researcher to select the q statistical variables they predict will be the most important in discriminating the statistical units before applying the clustering algorithm. Here we show how this selection can be formulated as a non-linear mixed integer optimization mode and we show how this model can be linearized in several different ways. These linearizations are compared in a computational study and the results outline that the radius formulation of the p-median is the most efficient model for solving this problem.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://e-archivo.uc3m.es/bitstream/10016/14672/1/ws121913.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws121913.

    as in new window
    Length:
    Date of creation: Jun 2012
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws121913

    Contact details of provider:
    Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
    More information through EDIRC

    Related research

    Keywords: p-median problem; Distance selection; Radius formulation;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. T. D. Klastorin, 1985. "The p-Median Problem for Cluster Analysis: A Comparative Test Using the Mixture Model Approach," Management Science, INFORMS, vol. 31(1), pages 84-95, January.
    2. John M. Mulvey & Harlan P. Crowder, 1979. "Cluster Analysis: An Application of Lagrangian Relaxation," Management Science, INFORMS, vol. 25(4), pages 329-340, April.
    3. Stefano Benati & Silvana Stefani, 2011. "The Academic Journal Ranking Problem: A Fuzzy-Clustering Approach," Journal of Classification, Springer, vol. 28(1), pages 7-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws121913. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.