IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws104427.html
   My bibliography  Save this paper

Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis

Author

Listed:
  • Marín Díazaraque, Juan Miguel
  • Rodríguez Bernal, M. T.

Abstract

Multiple testing analysis, based on clustering methodologies, is usually applied in Microarray Data Analysis for comparisons between pair of groups. In this paper, we generalize this methodology to deal with multiple comparisons among more than two groups obtained from microarray expressions of genes. Assuming normal data, we define a statistic which depends on sample means and sample variances, distributed as a non-central t-distribution. As we consider multiple comparisons among groups, a mixture of non-central t-distributions is derived. The estimation of the components of mixtures is obtained via a Bayesian approach, and the model is applied in a multiple comparison problem from a microarray experiment obtained from gorilla, bonobo and human cultured fibroblasts.

Suggested Citation

  • Marín Díazaraque, Juan Miguel & Rodríguez Bernal, M. T., 2010. "Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis," DES - Working Papers. Statistics and Econometrics. WS ws104427, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws104427
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/9604/ws104427.pdf?sequence=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Choy & A. Smith, 1997. "Hierarchical models with scale mixtures of normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 205-221, June.
    2. Ming Yuan & Christina Kendziorski, 2006. "A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification," Biometrics, The International Biometric Society, vol. 62(4), pages 1089-1098, December.
    3. Dahl, David B. & Newton, Michael A., 2007. "Multiple Hypothesis Testing by Clustering Treatment Effects," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 517-526, June.
    4. repec:dau:papers:123456789/1906 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marín, J.M. & Rodríguez-Bernal, M.T., 2012. "Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1898-1907.
    2. Brian J. Reich & Howard D. Bondell, 2011. "A Spatial Dirichlet Process Mixture Model for Clustering Population Genetics Data," Biometrics, The International Biometric Society, vol. 67(2), pages 381-390, June.
    3. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    4. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    5. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    6. Chan, Jennifer S.K. & Kuk, Anthony Y.C. & Yam, Carrie H.K., 2005. "Monte Carlo approximation through Gibbs output in generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 300-312, June.
    7. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    8. Francesco Denti & Michele Guindani & Fabrizio Leisen & Antonio Lijoi & William Duncan Wadsworth & Marina Vannucci, 2021. "Two‐group Poisson‐Dirichlet mixtures for multiple testing," Biometrics, The International Biometric Society, vol. 77(2), pages 622-633, June.
    9. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
    10. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
    11. Michele Guindani & Peter Müller & Song Zhang, 2009. "A Bayesian discovery procedure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 905-925, November.
    12. Scott, James G., 2012. "Benchmarking historical corporate performance," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1795-1807.
    13. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    14. Richard F. MacLehose & David B. Dunson, 2010. "Bayesian Semiparametric Multiple Shrinkage," Biometrics, The International Biometric Society, vol. 66(2), pages 455-462, June.
    15. Elisa C. J. Maria & Isabel Salazar & Luis Sanz & Miguel A. Gómez-Villegas, 2020. "Using Copula to Model Dependence When Testing Multiple Hypotheses in DNA Microarray Experiments: A Bayesian Approximation," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    16. Victor Korolev, 2020. "Some Properties of Univariate and Multivariate Exponential Power Distributions and Related Topics," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    17. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    18. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    19. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    20. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.

    More about this item

    Keywords

    Clustering;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws104427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.