Advanced Search
MyIDEAS: Login

A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation

Contents:

Author Info

  • Concepción Ausín

    ()

  • Pedro Galeano

    ()

  • Pulak Ghosh

    ()

Abstract

Financial time series analysis deals with the understanding of data collected on financial markets. Several parametric distribution models have been entertained for describing, estimating and predicting the dynamics of financial time series. Alternatively, this article considers a Bayesian semiparametric approach. In particular, the usual parametric distributional assumptions of the GARCH-type models are relaxed by entertaining the class of location-scale mixtures of Gaussian distributions with a Dirichlet process prior on the mixing distribution, leading to a Dirichlet process mixture model. The proposed specification allows for a greater exibility in capturing both the skewness and kurtosis frequently observed in financial returns. The Bayesian model provides statistical inference with finite sample validity. Furthermore, it is also possible to obtain predictive distributions for the Value at Risk (VaR), which has become the most widely used measure of market risk for practitioners. Through a simulation study, we demonstrate the performance of the proposed semiparametric method and compare results with the ones from a normal distribution assumption. We also demonstrate the superiority of our proposed semiparametric method using real data from the Bombay Stock Exchange Index (BSE-30) and the Hang Seng Index (HSI).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://e-archivo.uc3m.es/bitstream/10016/9283/1/ws103822.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws103822.

as in new window
Length:
Date of creation: Sep 2010
Date of revision:
Handle: RePEc:cte:wsrepe:ws103822

Contact details of provider:
Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
More information through EDIRC

Related research

Keywords: Bayesian estimation; Deviance information criterion; Dirichlet process mixture; Financial time series; Location-scale Gaussian mixture; Markov chain Monte Carlo;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mark J Jensen & John M Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," Working Papers tecipa-458, University of Toronto, Department of Economics.
  2. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws103822. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.