Advanced Search
MyIDEAS: Login to save this paper or follow this series

A robust partial least squares method with applications

Contents:

Author Info

  • Javier Gonzalez
  • Daniel Pena
  • Rosario Romera
Registered author(s):

    Abstract

    Partial least squares regression (PLS) is a linear regression technique developed to relate many regressors to one or several response variables. Robust methods are introduced to reduce or remove the effect of outlying data points. In this paper we show that if the sample covariance matrix is properly robustified further robustification of the linear regression steps of the PLS algorithm becomes unnecessary. The robust estimate of the covariance matrix is computed by searching for outliers in univariate projections of the data on a combination of random directions (Stahel-Donoho) and specific directions obtained by maximizing and minimizing the kurtosis coefficient of the projected data, as proposed by Peña and Prieto (2006). It is shown that this procedure is fast to apply and provides better results than other procedures proposed in the literature. Its performance is illustrated by Monte Carlo and by an example, where the algorithm is able to show features of the data which were undetected by previous methods.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://e-archivo.uc3m.es/bitstream/10016/665/1/ws071304.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws071304.

    as in new window
    Length:
    Date of creation: Mar 2007
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws071304

    Contact details of provider:
    Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://www.uc3m.es/uc3m/dpto/DEE/departamento.html
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws071304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.