IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/27483.html
   My bibliography  Save this paper

Seasonality Detection in Small Samples using Score-Driven Nonlinear Multivariate Dynamic Location Models

Author

Listed:
  • Blazsek, Szabolcs
  • Escribano, Álvaro
  • Licht, Adrian

Abstract

We suggest a new mechanism to detect stochastic seasonality of multivariate macroeconomic variables, by using an extension of the score-driven first-order multivariate t-distribution model. We name the new model as the quasi-vector autoregressive (QVAR) model. QVAR is a nonlinear extension of Gaussian VARMA (VAR moving average). The location of dependent variables for QVAR is updated by the score function, thus QVAR is robust to extreme observations. For QVAR, we present the econometric formulation, computation of the impulse response function (IRF), maximum likelihood (ML) estimation, and conditions of the asymptotic properties of ML that include invertibility. We use quarterly macroeconomic data for the period of 1987:Q1 to 2013:Q2 inclusive, which include extreme observations from three I(0) variables: percentage change in crude oil real price, United States (US) inflation rate, and US real gross domestic product (GDP) growth. The sample size of these data is relatively small, which occurs frequently in macroeconomic analyses. The statistical performance of QVAR is superior to that of VARMA and VAR. Annual seasonality effects are identified for QVAR, whereas those effects are not identified for VARMA and VAR. Our results suggest that QVAR may be used as a practical tool for seasonality detection in small macroeconomic datasets.

Suggested Citation

  • Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonality Detection in Small Samples using Score-Driven Nonlinear Multivariate Dynamic Location Models," UC3M Working papers. Economics 27483, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:27483
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/27483/we1809.pdf?sequence=1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Szabolcs Blazsek & Marco Villatoro, 2015. "Is Beta- t -EGARCH(1,1) superior to GARCH(1,1)?," Applied Economics, Taylor & Francis Journals, vol. 47(17), pages 1764-1774, April.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    4. Blazsek, Szabolcs & Escribano, Alvaro, 2010. "Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors," Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
    5. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
    6. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    7. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575.
    8. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    9. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    10. Szabolcs Blazsek & Han-Chiang Ho, 2017. "Markov regime-switching Beta--EGARCH," Applied Economics, Taylor & Francis Journals, vol. 49(47), pages 4793-4805, October.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. repec:hal:journl:peer-00732533 is not listed on IDEAS
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Szabolcs Blazsek & Vicente Mendoza, 2016. "QARMA-Beta- t -EGARCH versus ARMA-GARCH: an application to S&P 500," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1119-1129, March.
    15. Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
    16. Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Event-study analysis by using dynamic conditional score models," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4530-4541, September.
    17. Astrid Ayala & Szabolcs Blazsek, 2018. "Score-driven copula models for portfolios of two risky assets," The European Journal of Finance, Taylor & Francis Journals, vol. 24(18), pages 1861-1884, December.
    18. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Score-driven dynamic patent count panel data models," Economics Letters, Elsevier, vol. 149(C), pages 116-119.
    19. Ayala, Astrid & Blazsek, Szabolcs & Escribano, Álvaro, 2017. "Dynamic conditional score models with time-varying location, scale and shape parameters," UC3M Working papers. Economics 25043, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    21. Lutz Kilian, 2008. "A Comparison of the Effects of Exogenous Oil Supply Shocks on Output and Inflation in the G7 Countries," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 78-121, March.
    22. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    23. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2017. "Score-driven non-linear multivariate dynamic location models," UC3M Working papers. Economics 25739, Universidad Carlos III de Madrid. Departamento de Economía.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de Economía.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
    3. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Ayala, Astrid & Blazsek, Szabolcs & Escribano, Álvaro, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    6. Blazsek Szabolcs & Licht Adrian & Escribano Alvaro, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.
    7. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    8. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
    9. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    10. Blazsek, Szabolcs & Escribano, Alvaro, 2016. "Score-driven dynamic patent count panel data models," Economics Letters, Elsevier, vol. 149(C), pages 116-119.
    11. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    12. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
    13. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    14. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    15. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
    16. Blasques, F. & Gorgi, P. & Koopman, S.J., 2021. "Missing observations in observation-driven time series models," Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
    17. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    18. Ayala, Astrid & Blazsek, Szabolcs & Escribano, Álvaro, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    19. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    20. Blazsek, Szabolcs & Escribano, Álvaro, 2015. "Dynamic conditional score patent count panel data models," UC3M Working papers. Economics we1510, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:27483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.