IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2390.html
   My bibliography  Save this paper

Locating fire stations: an integrated approach for Belgium

Author

Listed:
  • CHEVALIER, Philippe
  • THOMAS, Isabelle
  • GERAETS, David
  • GOETGHEBEUR, Els

Abstract

This paper demonstrates the potential of a decision-support system developed for Belgium by a consortium of universities and a private firm, in the framework of a public call by the Ministry of the Interior. The system is designed to provide the Belgian emergency management administration with a complete decision-aid tool for the location of fire-stations. The originality of the project is that it includes a risk-modeling approach developed at a national scale. This analysis involves a multiscale GIS system which includes a thorough representation of the physical, human and economic spatial realities, a risk modeling approach, an adequate optimal location and allocation model (taking into account both queuing and staffing problems). The final result is an interactive operational tool for defining locations, equipment allocations, staffing, response times, the cost/efficiency trade-off, etc. which can be used in an assessment as well as a prospective context. It has numerous functionalities including rapid modification of the modeling conditions to allow for quick scenario analysis, multiscale analysis, and prospective analysis.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • CHEVALIER, Philippe & THOMAS, Isabelle & GERAETS, David & GOETGHEBEUR, Els, 2011. "Locating fire stations: an integrated approach for Belgium," LIDAM Reprints CORE 2390, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2390
    DOI: 10.1016/j.seps.2012.02.003
    Note: In : Revue Economique, 62(4), 765-772, 2011
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.seps.2012.02.003
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.seps.2012.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Badri, Masood A. & Mortagy, Amr K. & Alsayed, Colonel Ali, 1998. "A multi-objective model for locating fire stations," European Journal of Operational Research, Elsevier, vol. 110(2), pages 243-260, October.
    2. Donald R. Plane & Thomas E. Hendrick, 1977. "Mathematical Programming and the Location of Fire Companies for the Denver Fire Department," Operations Research, INFORMS, vol. 25(4), pages 563-578, August.
    3. Eiselt, H.A. & Marianov, Vladimir, 2009. "Gradual location set covering with service quality," Socio-Economic Planning Sciences, Elsevier, vol. 43(2), pages 121-130, June.
    4. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    5. Grubesic, Tony H., 2008. "Zip codes and spatial analysis: Problems and prospects," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 129-149, June.
    6. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    7. Ohlsson, Mattias & Peterson, Carsten & Soderberg, Bo, 2001. "An efficient mean field approach to the set covering problem," European Journal of Operational Research, Elsevier, vol. 133(3), pages 583-595, September.
    8. H Beguin & I Thomas & D Vandenbussche, 1992. "Weight Variations within a Set of Demand Points, and Location-Allocation Issues: A Case Study of Public Libraries," Environment and Planning A, , vol. 24(12), pages 1769-1779, December.
    9. repec:cor:louvrp:-747 is not listed on IDEAS
    10. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    2. Nyimbili, Penjani Hopkins & Erden, Turan, 2020. "GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in Istanbul, Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Degel, Dirk & Wiesche, Lara & Rachuba, Sebastian & Werners, Brigitte, 2014. "Reorganizing an existing volunteer fire station network in Germany," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 149-157.
    4. Chaudhary, Pandav & Chhetri, Sachin Kumar & Joshi, Kiran Man & Shrestha, Basanta Man & Kayastha, Prabin, 2016. "Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 60-71.
    5. Bashar Bashir & Abdullah Alsalman & Arsalan Ahmed Othman & Ahmed K. Obaid & Hussein Bashir, 2021. "New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS," Land, MDPI, vol. 10(11), pages 1-19, October.
    6. Dmitrii Usanov & G.A. Guido Legemaate & Peter M. van de Ven & Rob D. van der Mei, 2019. "Fire truck relocation during major incidents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 105-122, March.
    7. Fonseca Morello, Thiago & Marchetti Ramos, Rossano & O. Anderson, Liana & Owen, Nathan & Rosan, Thais Michele & Steil, Lara, 2020. "Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon," Ecological Economics, Elsevier, vol. 169(C).
    8. Pieter L. van den Berg & Guido A. G. Legemaate & Rob D. van der Mei, 2017. "Increasing the Responsiveness of Firefighter Services by Relocating Base Stations in Amsterdam," Interfaces, INFORMS, vol. 47(4), pages 352-361, August.
    9. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Wenhao Yu & Yujie Chen & Menglin Guan, 2021. "Hierarchical siting of macro fire station and micro fire station," Environment and Planning B, , vol. 48(7), pages 1972-1988, September.
    11. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    12. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    2. Berman, Oded & Hajizadeh, Iman & Krass, Dmitry & Rahimi-Vahed, Alireza, 2018. "Reconfiguring a set of coverage-providing facilities under travel time uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 1-12.
    3. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    4. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    5. Emel Aktaş & Özay Özaydın & Burçin Bozkaya & Füsun Ülengin & Şule Önsel, 2013. "Optimizing Fire Station Locations for the Istanbul Metropolitan Municipality," Interfaces, INFORMS, vol. 43(3), pages 240-255, May-June.
    6. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    7. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.
    8. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    9. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    10. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.
    11. Huanfa Chen & Alan T. Murray & Rui Jiang, 2021. "Open-source approaches for location cover models: capabilities and efficiency," Journal of Geographical Systems, Springer, vol. 23(3), pages 361-380, July.
    12. Buchheim, Christoph & Crama, Yves & Rodríguez-Heck, Elisabeth, 2019. "Berge-acyclic multilinear 0–1 optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 102-107.
    13. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    14. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    15. Pedro V. Amaral & Alan T. Murray, 2016. "Equity in regional access to renal dialysis in Brazil," Regional Science Policy & Practice, Wiley Blackwell, vol. 8(1-2), pages 27-44, March.
    16. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    17. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    18. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    19. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    20. Fredriksson, Anders, 2017. "Location-allocation of public services – Citizen access, transparency and measurement. A method and evidence from Brazil and Sweden," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 1-12.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • R53 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Public Facility Location Analysis; Public Investment and Capital Stock

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.