Advanced Search
MyIDEAS: Login to save this paper or follow this series

A component GARCH model with time varying weights

Contents:

Author Info

  • BAUWENS, Luc
  • STORTI, Giuseppe

Abstract

The empirical evidence from financial markets suggests that the pattern of response of market volatility to shocks is highly dependent on the magnitude of shocks themselves. Markov-Switching GARCH (MS-GARCH) models are a valuable tool for modelling state dependence in the dynamics of the volatility process. However, their application is still limited by the severe difficulties arising at the estimation and identification stages. In order to allow for time varying persistence in the volatility dynamics, it is here suggested to use a modification of the component GARCH model proposed by Ding and Granger (1996) in which the weights associated to the model components are time varying and depend on adequately chosen state variables such as lagged values of the conditional standard deviation. Differently from MS-GARCH models, likelihood based inference for the proposed model is readily available using standard numerical tools. Since the proposed model implies a non-linear representation for the squared observations, the generation of multi-step-ahead volatility predictions imposes some additional difficulties with respect to standard GARCH models, for which a linear ARMA representation can be obtained. In the paper, we apply simulation based techniques for estimating the predictive density of returns.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://dx.doi.org/10.2202/1558-3708.1512
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers RP with number -2125.

as in new window
Length:
Date of creation:
Date of revision:
Handle: RePEc:cor:louvrp:-2125

Note: In : Studies in Nonlinear Dynamics & Econometrics, 13(2), 1-31, 2009
Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
  2. LUBRANO, Michel, 1998. "Smooth transition GARCH models: a Bayesian perspective," CORE Discussion Papers 1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
  4. Peter Christoffersen & Sílvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
  5. Baillie, R.T. & Bollerslev, R.T., 1990. "Prediction In Dynamic Models With Time Dependent Conditional Variances," Papers 8815, Michigan State - Econometrics and Economic Theory.
  6. Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2006. "Regime switching GARCH models," Discussion Papers (ECON - Département des Sciences Economiques) 2006006, Université catholique de Louvain, Département des Sciences Economiques.
  7. Luc Bauwens & Sébastien Laurent, 2002. "A New Class of Multivariate skew Densities, with Application to GARCH Models," Computing in Economics and Finance 2002 5, Society for Computational Economics.
  8. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
  9. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  10. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
  11. BAUWENs, Luc & LUBRANO , Michel, 1996. "Bayesian Inference on GARCH Models using the Gibbs Sampler," CORE Discussion Papers 1996027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
  13. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  14. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  15. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
  16. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-74, October.
  17. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
  18. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  19. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
  20. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, Department of Economics, University of Kent.
  2. Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," CREATES Research Papers 2014-13, School of Economics and Management, University of Aarhus.
  3. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009. "Asymmetric multivariate normal mixture GARCH," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
  5. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, 08.
  6. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
  7. Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, School of Economics and Management, University of Aarhus.
  8. Jamal Bouoiyour & Refk Selmi, 2014. "Commodity price uncertainty and manufactured exports in Morocco and Tunisia: Some insights from a novel GARCH model," Economics Bulletin, AccessEcon, vol. 34(1), pages 220-233.
  9. Bouoiyour, Jamal & Selmi, Refk, 2013. "Nonlinearities and the nexus between inflation and inflation uncertainty in Egypt: New evidence from wavelets transform framework," MPRA Paper 52414, University Library of Munich, Germany.
  10. Bouoiyour, Jamal & Selmi, Refk, 2013. "The controversial link between exchange rate volatility and exports: Evidence from Tunisian case," MPRA Paper 49133, University Library of Munich, Germany, revised Mar 2013.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:-2125. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.