Advanced Search
MyIDEAS: Login to save this paper or follow this series

On estimation of monotone and concave frontier functions

Contents:

Author Info

  • GIJBELS, Irène
  • MAMMEN, Enno
  • PARK, Byeong U.
  • SIMAR, Léopold

Abstract

When analyzing the productivity of firms, one may want to compare how the firms transform a set of inputs x (typically labor, energy or capital) into an output y (typically a quantity of goods produced). The economic efficiency of a firm is then defined in terms of its ability of operating close to or on the production frontier which is the boundary of the production set. The frontier function gives the maximal level of output attainable by a firm for a given combination of its inputs. The efficiency of a firm may then be estimated via the distance between the attained production level and the optimal level given by the frontier function. From a statistical point of view, the frontier function may be viewed as the upper boundary of the support of the population of firms density in the input and output space. It is often reasonable to assume that the production frontier is a concave monotone function. Then, a famous estimator, in the univariate input and output case, is the data envelopment analysis (DEA) estimator which is the lowest concave monotone increasing function covering all sample points. This estimator is biased downwards since it never exceeds the true production frontier. In this paper we derive the asymptotic distribution of the DEA estimator, which enables us to assess the asymptotic bias and hence to propose an improved bias corrected estimator. This bias corrected estimator involves consistent estimation of the density function as well as of the second derivative of the production frontier. We also discuss briefly the construction of asymptotic confidence intervals. The finite sample performance of the bias corrected estimator is investigated via a simulation study and the procedure is illustrated for a real data example. --

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://dx.doi.org/10.1080/01621459.1999.10473837
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers RP with number -1392.

as in new window
Length:
Date of creation:
Date of revision:
Handle: RePEc:cor:louvrp:-1392

Note: In : Journal of the American Statistical Association, 94(445), 220-228, 1999
Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-76, August.
  2. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  3. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
  4. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
  5. Berndt, Ernst R. & Christensen, Laurits R., 1973. "The translog function and the substitution of equipment, structures, and labor in U.S. manufacturing 1929-68," Journal of Econometrics, Elsevier, vol. 1(1), pages 81-113, March.
  6. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:-1392. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.