Advanced Search
MyIDEAS: Login

Intermediate gradient methods for smooth convex problems with inexact oracle

Contents:

Author Info

  • DEVOLDER, Olivier

    ()
    (Université catholique de Louvain, CORE, Belgium)

  • GLINEUR, François

    ()
    (Université catholique de Louvain, CORE, Belgium)

  • NESTEROV, Yurii

    ()
    (Université catholique de Louvain, CORE, Belgium)

Abstract

Between the robust but slow (primal or dual) gradient methods and the fast but sensitive to errors fast gradient methods, our goal in this paper is to develop first-order methods for smooth convex problems with intermediate speed and intermediate sensitivity to errors. We develop a general family of first-order methods, the Intermediate Gradient Method (IGM), based on two sequences of coefficients. We prove that the behavior of such kind of method is directly governed by the choice of coefficients and that the existing dual and fast gradient methods can be retrieved with particular choices for the coefficients. Moreover, the degree of freedom in the choice of these coefficients can be also used in order to generate intermediate behaviors. We propose a switching policy for the coefficients that allows us to see the corresponding IGM as a smart switching between fast and dual gradient methods and to reach target accuracies, unreachable by the fast gradient methods, in a significantly smaller number of iterations compared to what is needed using the slow gradient methods. With another choice for the coefficients, we are also able to generate methods exhibiting the full spectrum of convergence rates, corresponding to every possible trade off between fastness of the method and robustness to errors.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://uclouvain.be/cps/ucl/doc/core/documents/coredp2013_17web.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2013017.

as in new window
Length:
Date of creation: 17 May 2013
Date of revision:
Handle: RePEc:cor:louvco:2013017

Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," CORE Discussion Papers 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Fleurbaey,Marc & Maniquet,François, 2011. "A Theory of Fairness and Social Welfare," Cambridge Books, Cambridge University Press, number 9780521715348, November.
  3. Duranton, Gilles & Martin, Philippe & Mayer, Thierry & Mayneris, Florian, 2010. "The Economics of Clusters: Lessons from the French Experience," OUP Catalogue, Oxford University Press, number 9780199592203.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2013017. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.