Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimation of support of a probability density and estimation of support functionals

Contents:

Author Info

  • KOROSTELEV, A.P.

    (Institute for System Studies, Moscow)

  • TSYBAKOV , A.B.

    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

Abstract

The problem of estimating the unknown support G [ belong ] [ R^N ] of a uniform density is considered under the assumption that the support G belongs to the class of "boundary fragments" with smooth upper surface. The minimax lower bounds for the accuracy of arbitrary estimators of G are obtained if the distance between sets is Hausdorff metric or measure of symmetric difference. The estimators of support are proposed which are optimal in the sense that they attain the convergence rate of the minimax lower bound. Similar results are proved for the problem of estima.tion of functionals of the density support.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/ac5fa4ec-dc4f-45f8-b886-024e47e76147/coredp_1992_29.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1992029.

as in new window
Length:
Date of creation: 01 Apr 1992
Date of revision:
Handle: RePEc:cor:louvco:1992029

Contact details of provider:
Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Email:
Web page: http://www.uclouvain.be/core
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1992029. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.