Advanced Search
MyIDEAS: Login

Decomposition-Based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems


Author Info

  • P. M. Kleniati
  • Panos Parpas
  • Berc Rustem
Registered author(s):


    We consider polynomial optimization problems pervaded by a sparsity pattern. It has been shown in [1, 2] that the optimal solution of a polynomial programming problem with structured sparsity can be computed by solving a series of semidefinite relaxations that possess the same kind of sparsity. We aim at solving the former relaxations with a decompositionbased method, which partitions the relaxations according to their sparsity pattern. The decomposition-based method that we propose is an extension to semidefinite programming of the Benders decomposition for linear programs [3] .

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: no

    Bibliographic Info

    Paper provided by COMISEF in its series Working Papers with number 022.

    as in new window
    Length: 29 pages
    Date of creation: 10 Nov 2009
    Date of revision:
    Handle: RePEc:com:wpaper:022

    Contact details of provider:
    Web page:

    Related research

    Keywords: Polynomial optimization; Semidefinite programming; Sparse SDP relaxations; Benders decomposition;

    This paper has been announced in the following NEP Reports:


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Polyxeni-Margarita Kleniati & Panos Parpas & Berç Rustem, 2010. "Partitioning procedure for polynomial optimization," Journal of Global Optimization, Springer, vol. 48(4), pages 549-567, December.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:com:wpaper:022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Anil Khuman).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.