Advanced Search
MyIDEAS: Login to save this paper or follow this series

Metastable Equilibria

Contents:

Author Info

  • Srihari Govindan
  • Robert Wilson

Abstract

We define a refinement of Nash equilibria called metastability. This refinement supposes that the given game might be embedded within any global game that leaves its local bestreply correspondence unaffected. A selected set of equilibria is metastable if it is robust against perturbations of every such global game; viz., every sufficiently small perturbation of the best-reply correspondence of each global game has an equilibrium that projects arbitrarily near the selected set. Metastability satisfies the standard decisiontheoretic axioms obtained by Mertens' (1989) refinement (the strongest proposed refinement), and it satisfies the projection property in Mertens' small-worlds axiom: a metastable set of a global game projects to a metastable set of a local game. But the converse is slightly weaker than Mertens' decomposition property: a metastable set of a local game contains a metastable set that is the projection of a metastable set of a global game. This is inevitable given our demonstration that metastability is equivalent to a strong form of homotopic essentiality. Mertens' definition invokes homological essentiality whereas we derive homotopic essentiality from primitives (robustness for every embedding). We argue that this weak version of decomposition has a natural gametheoretic interpretation.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://faculty-gsb.stanford.edu/wilson/PDF/Game%20Theory/Metastability060206rev.pdf
Download Restriction: no

Bibliographic Info

Paper provided by UCLA Department of Economics in its series Levine's Bibliography with number 122247000000001211.

as in new window
Length:
Date of creation: 03 Mar 2006
Date of revision:
Handle: RePEc:cla:levrem:122247000000001211

Contact details of provider:
Web page: http://www.dklevine.com/

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Srihari Govindan & Robert Wilson, 2006. "Essential Equilibria," Levine's Bibliography 122247000000001035, UCLA Department of Economics.
  2. Mertens, J.-F., 1988. "Stable equilibria - a reformulation," CORE Discussion Papers 1988038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  3. Srihari Govindan & Robert Wilson, 2006. "Sufficient Conditions for Stable Equilibria," Levine's Bibliography 784828000000000267, UCLA Department of Economics.
  4. GOVINDAN, Srihari & MERTENS, Jean-François, . "An equivalent definition of stable equilibria," CORE Discussion Papers RP -1737, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. David Kreps & Robert Wilson, 1998. "Sequential Equilibria," Levine's Working Paper Archive 237, David K. Levine.
  6. MERTENS, Jean-François, . "The small worlds axiom for stable equilibria," CORE Discussion Papers RP -1015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Hillas, John & Kohlberg, Elon, 2002. "Foundations of strategic equilibrium," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 42, pages 1597-1663 Elsevier.
  8. Hillas, John, 1990. "On the Definition of the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 58(6), pages 1365-90, November.
  9. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
  10. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-37, September.
  11. Mclennan, A., 1989. "Selected Topics In The Theory Of Fixed Points," Papers 251, Minnesota - Center for Economic Research.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Srihari Govindan & Robert Wilson, 2009. "Axiomatic Equilibrium Selection for Generic two-player games," Levine's Working Paper Archive 814577000000000231, David K. Levine.
  2. Govindan, Srihari & Wilson, Robert B., 2007. "Stable Outcomes of Generic Games in Extensive Form," Research Papers 1933r, Stanford University, Graduate School of Business.
  3. Srihari Govindan & Robert Wilson, 2008. "Axiomatic Theory of Equilibrium Selection in Signalling Games with Generic Payoffs," Levine's Working Paper Archive 122247000000002381, David K. Levine.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000001211. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.