Advanced Search
MyIDEAS: Login

Arbitrage Based Pricing When Volatility Is Stochastic

Contents:

Author Info

  • Peter Bossaert
  • Eric Ghysels

    ()

  • Christian Gouriéroux

Abstract

One of the early examples of stochastic volatility models is Clark [1973]. He suggested that asset price movements should be tied to the rate at which transactions occur. To accomplish this, he made a distinction between transaction time and calendar time. This framework has hitherto been relatively unexploited to study derivative security pricing. This paper studies the implications of absence of arbitrage in economies where: (i) trade takes place in transaction time, (ii) there is a single state variable whose transaction-time price path is binomial, (iii) there are risk-free bonds with calendar-time maturities, and (iv) the relation between transaction time and calendar time is stochastic. The state variable could be interpreted in various ways. For example, it could be the price of a share of stock, as in Black and Scholes [1973], or a factor that summarizes changes in the investment opportunity set, as in Cox, Ingersoll and Ross [1985], or one that drives changes in the term structure of interest rates (Ho and Lee [1986], Heath, Jarrow and Morton [1992]). Property (iv) generally introduces stochastic volatility in the process of the state variable when recorded in calendar time. The paper investigates the pricing of derivative securities with calendar-time maturity. The restrictions obtained in Merton (1973) using simple buy-and-hold arbitrage portfolio arguments do not necessarily hold. Conditions are derived for all derivatives to be priced by dynamic arbitrage, i.e., for market completeness in the sense of Harrison and Pliska [1981]. A particular class of stationary economies where markets are indeed complete is characterized. Nous étudions la problématique de détermination de prix d'options lorsque la volatilité est stochastique. Normalement, la présence d'une volatilité stochastique entraîne une incomplétude des marchés. Nous proposons une approche par arbitrage, malgré cette apparente incomplétude. Elle consiste à exploiter une modélisation de la volatilité, proposée par Clark (1973), fondée sur une distinction entre un temps calendaire et un temps de transaction. En faisant cette distinction et en supposant qu'il y a une simple variable d'état binomiale en temps de transaction et un taux sans risque en temps calendaire, nous discutons les conditions d'absence d'opportunités d'arbitrage. Nous caractérisons les conditions permettant la détermination des prix d'options par arbitrage dynamique dans le sens de Harrison et Pliska (1981) et nous montrons que les restrictions à la Merton (1973) ne s'appliquent plus.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cirano.qc.ca/pdf/publication/96s-20.pdf
Download Restriction: no

Bibliographic Info

Paper provided by CIRANO in its series CIRANO Working Papers with number 96s-20.

as in new window
Length:
Date of creation: 01 Jul 1996
Date of revision:
Handle: RePEc:cir:cirwor:96s-20

Contact details of provider:
Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Email:
Web page: http://www.cirano.qc.ca/
More information through EDIRC

Related research

Keywords: Incomplete Markets; Transaction Time; Change of Time; Stochastic Volatility; Marchés incomplets; Temps de transaction; Changement de temps; Volatilité stochastique;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kamara, Avraham & Miller, Thomas W., 1995. "Daily and Intradaily Tests of European Put-Call Parity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(04), pages 519-539, December.
  2. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  5. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
  6. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Universite de Montreal, Departement de sciences economiques.
  7. Olivier Scaillet & Boris Leblanc, 1998. "Path dependent options on yields in the affine term structure model," Finance and Stochastics, Springer, vol. 2(4), pages 349-367.
  8. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  9. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  11. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
  12. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-84, March.
  13. Robert Jarrow & Dilip Madan, 1995. "Option Pricing Using The Term Structure Of Interest Rates To Hedge Systematic Discontinuities In Asset Returns," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 311-336.
  14. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
  2. �lvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
  3. Bossaerts, Peter & Hillion, Pierre, 2003. "Local parametric analysis of derivatives pricing and hedging," Journal of Financial Markets, Elsevier, vol. 6(4), pages 573-605, August.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:96s-20. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.