Advanced Search
MyIDEAS: Login

Pricing Longevity Bonds Using Affine-Jump Diffusion Models

Contents:

Author Info

  • Jorge Bravo

    ()
    (University of Évora, Department of Economics and CEFAGEUE)

Registered author(s):

    Abstract

    Historically, actuaries have been calculating premiums and mathematical reserves using a deterministic approach, by considering a deterministic mortality intensity, which is a function of the age only, extracted from available (static) life tables and by setting a flat ("best estimate") interest rate to discount cash flows over time. Since neither the mortality intensity nor interest rates are actually deterministic, life insurance companies and pension funds are exposed to both financial and mortality (systematic and unsystematic) risks when pricing and reserving for any kind of long-term living benefits, particularly on annuities and pensions. In this paper, we assume that an appropriate description of the demographic risks requires the use of stochastic models. In particular, we assume that the random evolution of the stochastic force of mortality of an individual can be modelled by using doubly stochastic processes. The model is then embedded into the well known affine-jump framework, widely used in the term structure literature, in order to derive closed-form solutions for the survival probability. We show that stochastic mortality models provide an adequate framework for the development of longevity risk hedging tools, namely mortality-linked contracts such as longevity bonds or mortality derivatives.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cefage.uevora.pt/en/content/download/2905/38764/version/1/file/2011_29.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by University of Evora, CEFAGE-UE (Portugal) in its series CEFAGE-UE Working Papers with number 2011_29.

    as in new window
    Length: 23 pages
    Date of creation: 2011
    Date of revision:
    Handle: RePEc:cfe:wpcefa:2011_29

    Contact details of provider:
    Postal: Colégio Espírito SANTO
    Phone: (351) 266 740 869
    Email:
    Web page: http://www.cefage.uevora.pt
    More information through EDIRC

    Related research

    Keywords: Stochastic mortality intensity; Longevity risk; Affine models; Projected lifetables.;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Piet De Jong & Leonie Tickle, 2006. "Extending Lee-Carter Mortality Forecasting," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 1-18.
    2. Philippe Artzner & Freddy Delbaen, 1995. "Default Risk Insurance And Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 5(3), pages 187-195.
    3. Lawrence R. Carter & Alexia Prskawetz, 2001. "Examining structural shifts in mortality using the Lee-Carter method," MPIDR Working Papers WP-2001-007, Max Planck Institute for Demographic Research, Rostock, Germany.
    4. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    5. Shripad Tuljapurkar & Carl Boe, . "Mortality Change and Forecasting: How Much and How Little Do We Know?," Pension Research Council Working Papers 98-2, Wharton School Pension Research Council, University of Pennsylvania.
    6. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    7. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
    8. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
    9. Renshaw, A. E. & Haberman, S., 2003. "On the forecasting of mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 379-401, July.
    10. Pitacco, Ermanno, 2004. "Survival models in a dynamic context: a survey," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 279-298, October.
    11. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    12. L. C. G. Rogers, 1997. "The Potential Approach to the Term Structure of Interest Rates and Foreign Exchange Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 157-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cfe:wpcefa:2011_29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Angela Pacheco).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.