IDEAS home Printed from https://ideas.repec.org/p/cec/wpaper/1201.html
   My bibliography  Save this paper

The bioenergies development: the role of biofuels and the CO2 price

Author

Listed:
  • Pierre-Andre Jouvet

    (Universite Paris Ouest Nanterre La Defense, Climate Economics Chair, France)

  • Frederic Lantz

    (IFPEN)

  • Elodie Le Cadre

    (IFPEN, Universite Paris Ouest Nanterre La Defense,)

Abstract

Reduction in energy dependancy and emissions of CO2 via renewables targeted in the European Union energy mix and taxation system might trigger the production of bioenergy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO2 price aspects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO2 price and feed-in tarifis. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelized. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO2 price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO2 emission price lower than 20 euros/tCO2, which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO2 price.

Suggested Citation

  • Pierre-Andre Jouvet & Frederic Lantz & Elodie Le Cadre, 2012. "The bioenergies development: the role of biofuels and the CO2 price," Working Papers 1201, Chaire Economie du climat.
  • Handle: RePEc:cec:wpaper:1201
    as

    Download full text from publisher

    File URL: http://www.chaireeconomieduclimat.org/RePEc/cec/wpaper/12-01_WP_2012-01_Jouvet_Lantz_LeCadre.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    2. Levin, Todd & Thomas, Valerie M. & Lee, Audrey J., 2011. "State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes," Energy Policy, Elsevier, vol. 39(2), pages 950-960, February.
    3. Ruiqing Miao & David A. Hennessy & Bruce A. Babcock, 2010. "Investment in Cellulosic Biofuel Refineries: Do Renewable Identification Numbers Matter?," Center for Agricultural and Rural Development (CARD) Publications 10-wp514, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Levin, Todd & Thomas, Valerie M. & Lee, Audrey J., 2011. "Erratum to "State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes" [Energy Policy 39 (2) (2010) 950-960]," Energy Policy, Elsevier, vol. 39(4), pages 2216-2216, April.
    5. Lin Fan & Benjamin F. Hobbs & Catherine S. Norman, 2010. "Risk Aversion and CO2 Regulatory Uncertainty in Power Generation Investment: Policy and Modeling Implications," Working Papers EPRG 1014, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    7. Fan, Lin & Hobbs, Benjamin F. & Norman, Catherine S., 2010. "Risk aversion and CO2 regulatory uncertainty in power generation investment: Policy and modeling implications," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 193-208, November.
    8. Kocoloski, Matt & Michael Griffin, W. & Scott Matthews, H., 2011. "Impacts of facility size and location decisions on ethanol production cost," Energy Policy, Elsevier, vol. 39(1), pages 47-56, January.
    9. Tehrani Nejad M., Alireza, 2007. "Allocation of CO2 emissions in petroleum refineries to petroleum joint products: A linear programming model for practical application," Energy Economics, Elsevier, vol. 29(4), pages 974-997, July.
    10. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    11. Tehrani Nejad Moghaddam, Alireza & Saint-Antonin, Valérie, 2008. "Impact of tightening the sulfur specifications on the automotive fuels' CO2 contribution: A French refinery case study," Energy Policy, Elsevier, vol. 36(7), pages 2449-2459, July.
    12. Hansson, Julia & Berndes, Gran & Johnsson, Filip & Kjrstad, Jan, 2009. "Co-firing biomass with coal for electricity generation--An assessment of the potential in EU27," Energy Policy, Elsevier, vol. 37(4), pages 1444-1455, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Albert Banal-Estañol & Jeremy Eckhause & Olivier Massol, 2015. "Incentives for early adoption of carbon capture technology: further considerations from a European perspective," Working Papers hal-02475485, HAL.
    3. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2015. "On the link between oil price and exchange rate : A time-varying VAR parameter approach," Working Papers hal-03206684, HAL.
    4. Anthony Paris, 2016. "The Effect of Biofuels on the Link between Oil and Agricultural Commodity Prices: A Smooth Transition Cointegration Approach," EconomiX Working Papers 2016-5, University of Paris Nanterre, EconomiX.
    5. Hache, Emmanuel, 2018. "Do renewable energies improve energy security in the long run?," International Economics, Elsevier, vol. 156(C), pages 127-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Dong Gu & Thomas, Valerie M., 2012. "An electricity generation planning model incorporating demand response," Energy Policy, Elsevier, vol. 42(C), pages 429-441.
    2. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    3. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    4. Meunier, Guy, 2013. "Risk aversion and technology mix in an electricity market," Energy Economics, Elsevier, vol. 40(C), pages 866-874.
    5. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    6. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    7. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    8. Shree Shakya & S. Kumar & Ram Shrestha, 2012. "Co-benefits of a carbon tax in Nepal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 77-101, January.
    9. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    10. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    11. Chen, Liang & Kettunen, Janne, 2017. "Is certainty in carbon policy better than uncertainty?," European Journal of Operational Research, Elsevier, vol. 258(1), pages 230-243.
    12. Delfina Rogowska & Artur Wyrwa, 2021. "Analysis of the Potential for Reducing Life Cycle Greenhouse Gas Emissions from Motor Fuels," Energies, MDPI, vol. 14(13), pages 1-19, June.
    13. Munoz, Francisco D. & van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F. & Watson, Jean-Paul, 2017. "Does risk aversion affect transmission and generation planning? A Western North America case study," Energy Economics, Elsevier, vol. 64(C), pages 213-225.
    14. Anwar, Muhammad Bashar & Stephen, Gord & Dalvi, Sourabh & Frew, Bethany & Ericson, Sean & Brown, Maxwell & O’Malley, Mark, 2022. "Modeling investment decisions from heterogeneous firms under imperfect information and risk in wholesale electricity markets," Applied Energy, Elsevier, vol. 306(PA).
    15. Pahle, Michael & Fan, Lin & Schill, Wolf-Peter, 2011. "How Emission Certificate Allocations Distort Fossil Investments: The German Example," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(4), pages 1975-1987.
    16. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    17. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    18. Fan, Lin & Norman, Catherine S. & Patt, Anthony G., 2012. "Electricity capacity investment under risk aversion: A case study of coal, gas, and concentrated solar power," Energy Economics, Elsevier, vol. 34(1), pages 54-61.
    19. Harrison Fell & Dallas Burtraw & Richard Morgenstern & Karen Palmer, 2012. "Climate Policy Design with Correlated Uncertainties in Offset Supply and Abatement Cost," Land Economics, University of Wisconsin Press, vol. 88(3), pages 589-611.
    20. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).

    More about this item

    Keywords

    Bioenergy; CO2 price; Re nery market; Electricity market; Optimization.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cec:wpaper:1201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chaire Economie du Climat (email available below). General contact details of provider: http://www.chaireeconomieduclimat.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.