IDEAS home Printed from https://ideas.repec.org/p/cea/doctra/e2004_16.html
   My bibliography  Save this paper

Technology Adoption in Nonrenewable Resource Management

Author

Listed:

Abstract

Nonrenewable resource scarcity has been a traditional concern when designing optimal growth models. Technological change has played an important role in those models, since its presence is assumed to mitigate the depletion effect on extraction paths over time. We formalize the general problem of a competitive nonrenewable resource extracting firm to analyze optimal extraction behavior and technology adoption when adoption is costly, both in a deterministic and a stochastic environment, when the firm either anticipates adoption or not. Based on a quadratic extraction cost function, our results do not support the traditional view according to which the firm will only incur in an adoption cost when the stock is depleted enough.

Suggested Citation

  • Maria A. Cunha-e-Sá & Ana Balcão Reis & Catarina Roseta-Palma, 2004. "Technology Adoption in Nonrenewable Resource Management," Economic Working Papers at Centro de Estudios Andaluces E2004/16, Centro de Estudios Andaluces.
  • Handle: RePEc:cea:doctra:e2004_16
    as

    Download full text from publisher

    File URL: http://public.centrodeestudiosandaluces.es/pdfs/E200416.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Farzin, Y. H. & Huisman, K. J. M. & Kort, P. M., 1998. "Optimal timing of technology adoption," Journal of Economic Dynamics and Control, Elsevier, vol. 22(5), pages 779-799, May.
    2. Farzin, Y. H., 2001. "The impact of oil price on additions to US proven reserves," Resource and Energy Economics, Elsevier, vol. 23(3), pages 271-292, July.
    3. Balcer, Yves & Lippman, Steven A., 1984. "Technological expectations and adoption of improved technology," Journal of Economic Theory, Elsevier, vol. 34(2), pages 292-318, December.
    4. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    5. Tilton, John E. & Landsberg, Hans H., 1997. "Innovation, Productivity Growth, and the Survival of the U.S. Copper Industry," Discussion Papers 10534, Resources for the Future.
    6. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    7. Hall, Bronwyn H. & Khan, Beethika, 2003. "Adoption of New Technology," Department of Economics, Working Paper Series qt3wg4p528, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    8. Doraszelski, Ulrich, 2004. "Innovations, improvements, and the optimal adoption of new technologies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1461-1480, April.
    9. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    10. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    11. Cunha-e-Sá, Maria A. & Balcão Reis, Ana & Roseta-Palma, Catarina, 2009. "Technology adoption in nonrenewable resource management," Energy Economics, Elsevier, vol. 31(2), pages 235-239, March.
    12. Farzin Y. H., 1995. "Technological Change and the Dynamics of Resource Scarcity Measures," Journal of Environmental Economics and Management, Elsevier, vol. 29(1), pages 105-120, July.
    13. Farzin, Y H, 1992. "The Time Path of Scarcity Rent in the Theory of Exhaustible Resources," Economic Journal, Royal Economic Society, vol. 102(413), pages 813-830, July.
    14. Dasgupta, Partha, 1993. "Natural resources in an age of substitutability," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 23, pages 1111-1130, Elsevier.
    15. Abel, Andrew B, 1983. "Optimal Investment under Uncertainty," American Economic Review, American Economic Association, vol. 73(1), pages 228-233, March.
    16. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cunha-e-Sá, Maria A. & Balcão Reis, Ana & Roseta-Palma, Catarina, 2009. "Technology adoption in nonrenewable resource management," Energy Economics, Elsevier, vol. 31(2), pages 235-239, March.
    2. repec:ipg:wpaper:2014-529 is not listed on IDEAS
    3. Sahbi FARHANI & Jaleleddine BEN REJEB, 2015. "Link between Economic Growth and Energy Consumption in Over 90 Countries," Working Papers 2015-614, Department of Research, Ipag Business School.
    4. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid & Chaibi, Anissa, 2014. "What does MENA region initially need: Grow output or mitigate CO2 emissions?," Economic Modelling, Elsevier, vol. 38(C), pages 270-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariotti, Thomas & Décamps, Jean-Paul & Gensbittel, Fabien, 2021. "Investment Timing and Technological Breakthrough," CEPR Discussion Papers 16246, C.E.P.R. Discussion Papers.
    2. Frechette, Darren L., 1999. "Scarcity rents and the returns to mining," Resources Policy, Elsevier, vol. 25(1), pages 39-49, March.
    3. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
    4. Gérard Gaudet, 2007. "Natural resource economics under the rule of Hotelling," Canadian Journal of Economics, Canadian Economics Association, vol. 40(4), pages 1033-1059, November.
    5. Lin, C.Y. Cynthia, 2009. "An Empirical Dynamic Model of OPEC and Non-OPEC," Working Papers 225895, University of California, Davis, Department of Agricultural and Resource Economics.
    6. Farzin, Y. H., 2001. "The impact of oil price on additions to US proven reserves," Resource and Energy Economics, Elsevier, vol. 23(3), pages 271-292, July.
    7. Murto, Pauli, 2007. "Timing of investment under technological and revenue-related uncertainties," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1473-1497, May.
    8. Hagspiel, Verena & Huisman, Kuno J.M. & Nunes, Clàudia, 2015. "Optimal technology adoption when the arrival rate of new technologies changes," European Journal of Operational Research, Elsevier, vol. 243(3), pages 897-911.
    9. Klaus Mohn & Petter Osmundsen, 2011. "Asymmetry and uncertainty in capital formation: an application to oil investment," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4387-4401.
    10. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    11. Smith, James L., 2012. "On the portents of peak oil (and other indicators of resource scarcity)," Energy Policy, Elsevier, vol. 44(C), pages 68-78.
    12. Hagspiel, Verena & Huisman, Kuno J.M. & Kort, Peter M. & Lavrutich, Maria N. & Nunes, Cláudia & Pimentel, Rita, 2020. "Technology adoption in a declining market," European Journal of Operational Research, Elsevier, vol. 285(1), pages 380-392.
    13. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2017. "Strategic Technology Switching under Risk Aversion and Uncertainty," Discussion Papers 2017/10, Norwegian School of Economics, Department of Business and Management Science.
    14. Sarkar, Sudipto, 2021. "The uncertainty-investment relationship with endogenous capacity," Omega, Elsevier, vol. 98(C).
    15. Just, Richard E. & Netanyahu, Sinaia & Olson, Lars J., 2005. "Depletion of natural resources, technological uncertainty, and the adoption of technological substitutes," Resource and Energy Economics, Elsevier, vol. 27(2), pages 91-108, June.
    16. Kollenbach, Gilbert, 2017. "Unilateral climate Policy and the Green Paradox: Extraction Costs matter," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168245, Verein für Socialpolitik / German Economic Association.
    17. Unni Pillai, 2013. "A Model of Technological Progress in the Microprocessor Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 61(4), pages 877-912, December.
    18. Chronopoulos, Michail & Lumbreras, Sara, 2017. "Optimal regime switching under risk aversion and uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 543-555.
    19. van Soest, Daan P., 2005. "The impact of environmental policy instruments on the timing of adoption of energy-saving technologies," Resource and Energy Economics, Elsevier, vol. 27(3), pages 235-247, October.
    20. Chronopoulos, Michail & Siddiqui, Afzal, 2014. "When is it Better to Wait for a New Version? Optimal Replacement of an Emerging Technology under Uncertainty," Discussion Papers 2014/26, Norwegian School of Economics, Department of Business and Management Science.

    More about this item

    Keywords

    nonrenewable resources; technology adoption; depletion effect; cost of adoption.;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cea:doctra:e2004_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Mérida (email available below). General contact details of provider: https://edirc.repec.org/data/fcanges.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.